ACE Basin National Estuarine Research Reserve

Meteorological Metadata Report January - December 2015 Latest Update: 4/24/2017

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons

SCDNR/Marine Resources Division
217 Fort Johnson Road
Charleston, SC 29422
Green Pond, SC 29441
(942) 952 9299
(943) 944 9822

(843) 953-9300 (843) 844-8822

Contact Persons:

Dr. Denise Sanger, Research Coordinator Contact: sangerd@dnr.sc.gov (843) 953-9074

Saundra Upchurch, Reserve Biologist

Contact: UpchurchS@dnr.sc.gov (843) 953-9223

Amanda Fornal, Reserve Biologist

Contact: Fornala@dnr.sc.gov; (843) 953-9225

Meghan Miller, Reserve Technician

Contact: millerm@dnr.sc.gov; (843) 953-9225

2) Entry verification

a) Data Input Procedures:

Meteorological data is recorded in 15-minute intervals and stored in a Campbell Scientific CR1000 datalogger. ACE staff uses a data storage card to serve as a back-up for the CR1000 datalogger. The program that controls the sampling, schedule, and storage of data by the CR1000 is provided by CDMO.

The CR1000 is interfaced with the Campbell Scientific's Loggernet software. ACE staff downloads and troubleshoots Loggernet programs with a direct connection to the weather station, using a laptop computer and a 9-pin serial cable. The GOES satellite system also uploads all 15-minute meteorological data summaries to a NOAA server every hour. These multiple methods of data retrieval ensure that all measured parameters are reported.

b) QA/QC Procedures:

Data are uploaded from the CR1000 data logger to a Personal Computer (IBM compatible). Files are exported from LoggerNet in comma-delimited format and uploaded to the CDMO where they undergo automated primary QAQC and become part of the CDMO's online provisional database. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the Reserve where it is processed in Microsoft Excel using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, append files, and export the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. Outliers, suspect data, erroneous data, and other data flagged by the NERRQAQC macro are evaluated based on monthly field logs and NOAA historical data for the area. For more information on QAQC flags and QAQC codes, see Sections 11 and 12.

Amanda Fornal is responsible for the above tasks.

3) Research objectives – (Campbell Weather Station):

The principal objective of the Weather Monitoring Program is to record long-term meteorological data for the ACE Basin NERR in order to observe any environmental changes or trends over time.

4) Research methods -

Campbell Scientific data telemetry equipment was installed at the Bennett's Point station on 06/30/2006 and transmits data to the NOAA GOES satellite, NESDIS ID #3B01E672. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at http://cdmo.baruch.sc.edu.

For data collection, the CR1000 datalogger is programmed to record data at 15-minute intervals. 15-minute data averages are based on continuous 5-second readings for Air Temperature (°C), Relative Humidity (%), Barometric Pressure (mb), Wind Direction (degrees) and Wind Speed (m/s), and Battery Voltage (volts).

Maximum and Minimum Air Temperature (°C) and their times from 5-second data (these data are available from the Reserve).

Maximum Wind Speed (m/s) and time from 5-second intervals

Wind Direction Standard Deviation (degrees)

Precipitation (mm), PAR (mmol/m²), and Cumulative precipitation (mm) data are totaled from 5-second readings.

In-situ weather conditions are measured to verify the accuracy of the readings by the sensors, using a Kestrel 500 hand-held. After downloading data, sensors on the weather station are inspected for damage or debris. If any problems are found, it is repaired and/or cleaned. Tree limbs and other shrubs are cut back to prevent obstruction of the sensors. Sensors are removed and sent back to Campbell Scientific for calibration according to the following guidelines:

- Temperature/Humidity- yearly recalibration
- Rain Gauge- yearly recalibration (in house)
- Wind Speed/Direction- every 2 years recalibration
- Barometric Pressure- every 2 years recalibration
- PAR- every 2 years recalibration
- CR1000-every 5 years

Data collected underwent the QA/QC process described in 2b.

5) Site location and character -

The ACE Basin National Estuarine Research Reserve (NERR) is located on the Southeastern Atlantic coast of the United States, including portions of Charleston, Colleton

and Beaufort Counties in South Carolina. The study area encompasses the Ashepoo, Combahee, and South Edisto River basins, which empty into St. Helena Sound. Diverse estuarine wetlands provide extensive and complex habitat types for fish and wildlife. The NERR consists of approximately 92,000 acres of tidal marshes. Of this, 65,600 acres are salt marshes, 13,600 acres are brackish marshes and 12,100 acres are freshwater marshes. Interspersed within these three tidal marsh zones are approximately 26,000 acres of managed wetlands, marsh impoundments, and hammock islands. St. Helena Sound comprises approximately 23,870 acres of open coastal marine and estuarine waters.

The weather station is located at the Bennett's Point field station on Mosquito Creek, a navigable tributary off of the Ashepoo River. The weather station's latitudinal and longitudinal coordinates are: 32.55934 N, -80.45456 W and is located at sea level elevation. The station is approximately 90 m from the creek (800 m from the Ashepoo River) in a grassy field, 80 m to the southwest of the field station. The closest wind obstructions are oak trees, 25 m to the south and southwest of the weather station and 70 m from a public paved road. The closest SWMP water quality station, Mosquito Creek, is approximately 1655m from the weather station.

The Campbell Scientific data logger and the barometric sensor (sensor body at 1.5m and sensor tube at 1.0m) are enclosed in a Campbell Scientific enclosure box with moisture/humidity indicators and 2 desiccant packets. A 6.1m (15 foot) galvanized steel tower elevates the sensors above potential barriers and enhances the performance of each sensor. The PAR sensor and anemometer are attached to a cross-bar at the top of the tower at a height of 6.1m and the temperature/relative humidity sensor is attached approximately half way up the tower at a height of 3.35m. The solar panel is attached to a 2.5 m long arm, and is oriented to the east at approximately 47-degrees. The tipping bucket rain gauge (1.3 m height) is located 2.5 m to the southeast of the box on a concrete level platform. The sensors are wired to the CR1000 data logger following protocol in the CDMO Manual, with minor changes made in order to facilitate the function of upgraded sensors. A new larger enclosure box and solar panel were necessary with the installation of the GOES telemetry system.

6) Data collection period -

Weather data have been collected at the ACE Basin NERR Bennett's Point weather station since the station became operational in March 2001. Data was collected for the entire year (January 1, 2015 at 00:00 through December 31, 2015 23:45).

File Start Date and	File End Date and
Time	Time
12/01/2014 14:15	01/05/2015 10:45
01/05/2015 11:00	02/11/2015 18:00
02/11/2015 18:15	03/16/2015 12:30
03/16/2015 12:45	04/08/2015 12:15
04/08/2015 12:30	05/04/2015 10:15
05/04/2015 10:30	06/01/2015 10:30
06/01/2015 10:45	07/15/2015 10:15
07/15/2015 10:30	08/10/2015 10:45
08/10/2015 11:00	09/14/2015 10:45
09/14/2015 11:00	10/12/2015 12:45
10/12/2015 13:00	11/10/2015 13:45
11/10/2015 14:00	11/20/2015 10:00

11/20/2015 10:15	11/25/2015 11:45
11/25/2015 12:00	12/09/2015 12:00
12/09/2015 12:15	01/11/2016 14:45

7) Distribution -

According to the Ocean and Coastal Resource Management Data Dissemination Policy for the NERRS System-wide Monitoring Program, is as follows

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and process the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: http://www.nerrsdata.org/; accessed 12 October 2012.

NERR meteorological data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page www.nerrsdata.org. Data are available in comma delimited format.

8) Associated researchers and projects

The NERR Water Quality Monitoring Project is a study which records long-term water quality data for the ACE Basin in order to observe any changes or tends in water quality over time. The four sampling sites are in separate tributaries of the South Edisto and Ashepoo Rivers. Two sites represent an urban or "treatment" site, and the other two sites represent pristine areas within the Reserve. A salinity gradient is also observed between these four sites:

Edisto Island – GPS coordinates: 32.50399 N and -80.32470 W) In January 2015, Edisto Island station replaced Big Bay station as a primary station, and it is one km upstream of the Big Bay station (See the 2014 metadata report for a description of the Big Bay station). It is located on the dock of the Edisto Interpretive Center at Edisto Beach State Park. The mean depth and salinity are the same as the Big Bay Station, 2.34 m (7.67 feet), and 30.8 parts per thousand (ppt), respectively. The Edisto Island station is bordered by *Spartina alterniflora* marsh, and American oyster (*Crassostrea virginica*) forms a reef along the creek bank.

St. Pierre Creek - approximately 9 kilometers from the weather station, GPS coordinates: 32.52800 N and -80.36144 W. The station is surrounded by a wide expanse of *Spartina*

alterniflora marsh. Extensive mud flats and oyster reefs fringe the banks. Development in the immediate area is sparse, and this creek is subject to light boat traffic.

Fishing Creek – approximately 12 kilometers from the weather station, GPS coordinates: 32.6358 N and -80.3655W. The station is near Jehossee Island, a protected USFWS property, and is surrounded by extensive *Spartina cynosuroides* marsh and vast mud flats. The upland area is characterized by slash pine, live oak, and cabbage palmetto.

Mosquito Creek – approximately 2 kilometers from the weather station, GPS coordinates: 32.5558 N and -80.4380W. The station is surrounded by agriculture fields and impounded wetlands. A public boat landing and a commercial seafood business with three commercial shrimp boats and a fueling station are located about 0.8 km (0.5 mi) downstream of the monitoring station.

Jehossee Island – GPS coordinates: 32.6209N and -80.3965W. This monitoring station is in the South Edisto River proper. It is located on a dock at the Jehossee Island unit of the ACE Basin National Wildlife Refuge, which is owned and managed by the US Fish and Wildlife Services (USFWS). The station is surrounded by *Spartina cynosuroides* fringe marsh and managed wetlands (aka "waterfowl impoundments"). The upland area is dominated by inland maritime forest that is characterized by slash pine, live oak, and cabbage palmetto.

Measurements for all sites are taken every fifteen minutes over an approximate two-week or four week collection period (depending upon fouling previously experienced and future fouling rate expected).

In July 1997, the Reserve staff initiated nutrient monitoring study. The objective of the study is to ascertain the annual and tidal fluctuations in nutrient levels near our two data logger sites. Nutrient levels are measured during a complete tidal cycle each month, and the samples are analyzed for ammonia, nitrite & nitrate, orthophosphate, and chlorophyll a concentrations. In January of 2002, the nutrient monitoring protocol (NUT) was added to the NERR System Wide Monitoring Program (SWMP).

The results from these studies and additional studies conducted in the ACE Basin can be obtained by contacting the Reserve.

II. Physical Structure Descriptors

9) Sensor specifications –

Parameter: Temperature and Relative Humidity

Units: Celsius, % Model #: HMP45C

Operating Temperature: -40 to +60 degree C

Temperature Measurement Range: -40 to +60 degree C Temperature Accuracy: +/- 2% degree C @ 20 degree C

Relative Humidity Measurement Range: 0 - 100% non-condensing RH Accuracy: +/- @% RH (0 - 90%) and +/- 3% (90 - 100%)

Uncertainty of calibration: +/- 1.2% RH Date of last calibration: 03/13/2014

Date installed: 07/23/2014 - current as of 12/31/2015

SN D3520073

Parameter: Barometric Pressure

Units: millibars (mb) Model #: PTB101B

Calibrated Range: 26" - 32" (Standard) Supply Voltage: 12 VDC at 12 mA

Accuracy: +/-0.7 of span

Operating Temperature Range: -22 to +55 degree C

Date of last calibration: 05/13/2013

Date installed: 02/27/2014 - current as of 12/31/2015

SN Y0930012

Parameter: Wind speed Units: meter per second (m/s)

Sensor type: 18 cm diameter 4-blade helicoids propeller molded of polypropylene

Model #: 3001 MET One Wind Sentry

Range: 0-60 m/s (134 mph); gust survival 100 m/s (220 mph)

Accuracy: \pm /- 0.3 m/s

Date of last calibration: 05/06/2013

Date installed: 02/27/2014 - current as of 12/31/2015

Number 1

Parameter: Wind direction

Units: degrees

Sensor type: balanced vane, 38 cm turning radius

Model #: 3001 MET One Wind Sentry Date of last calibration: 05/06/2013

Date installed: 02/27/2014 - current as of 12/31/2015

Number 1

Parameter: Photosynthetic Active Radiation (PAR)

Units: mmoles m-2 (total flux) LiCor Quantum Sensor Model #: LI-190

Serial #: Q31559

Stability: < +/- 2% change over a 1 year period Operating Temperature: -20 to +65 degree C Sensitivity: Typically 30 µA per 100 klux

Light Spectrum Wavelength: 400 to 700 nanometers Calibration Factor: $264.70 \mu mol \ m^{-2} \ s^{-1} \ per \ mV$

Multiplier History and Date Changed: Date of last calibration: 05/03/2013

- PAR sensor 1 Calibrated 09/2002 Installed May 3, 2003 multiplier 1.27
- PAR sensor 2 Calibrated 07/2005 Installed August 22, 2005 multiplier 1.36
- PAR sensor 1 Calibrated 06/2007 Installed April 22, 2008 multiplier 1.34
- PAR sensor 2 Calibrated 10/2008 Installed Sept. 30, 2009 multiplier 2.18
 -SN Q35240
- PAR sensor 1 Calibrated 02/2010 Installed Dec. 9, 2010 multiplier 1.38
 -SN Q31559
- PAR sensor 2 Calibrated 02/2012 Installed Mar. 16, 2012 multiplier 3.12
 -SN Q35240
- PAR sensor 1 Calibrated 05/2013 Installed Feb. 27, 2014 multiplier 1.54

-SN Q31559

Parameter: Precipitation Units: millimeters (mm) Tipping Bucket Rain Gauge Texas Electronics Model #: TR-525I

Model #: TR-525I SN 23864-399

Calibration: 0.01 inch per tip

Accuracy: +/- 3% (Rates of 1 to 6 inches per hour)

Date of last calibration: 03/31/2014

Storage Module Model # SM4M

Storage capacity: 2 million low-resolution data values

Program storage: stores up to 8 program with a total capacity of 128 KB

Processor: Hitachi H8S

Operating system: 64 KB, flash memory based, user downloadable

Operating range: Temp: -35 to +65 degree C

Baud rates: 9600, 76800

Power requirements: 5 +/- 0.3 VDC @ 100 mA

The CR1000 has 2 MB of Flash EEPROM that is used to store the Operating System. Another 128 K Flash is used to store configuration settings. A minimum of 2 MB SRAM is available for program storage (16K), operating system use, and data storage. Additional storage is available by using a compact flash card in the optional CFM100 Compact Flash Module

Date CR1000 Installed: 06/29/2006, New CR1000 Installed 03/16/2012 SN 46152

CR1000 Firmware Version: CR1000_OS_29

CR1000 Program Version: ACEBPMET_V5.5_022714

10) Coded variable definitions -

Sampling station: Sampling site code: Station code: Bennett's Point BP ACEBPMET

11) QAQC flag definitions -

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is above or below sensor range, or missing. All remaining data are then flagged 0, as passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC

- -2 Missing Data
- -1 Optional SWMP supported parameter
- 0 Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Open reserved for later flag
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions -.

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the CR1000, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F_Record column.

General Errors

-	iiciai Eiioi	.5
	GIM	Instrument Malfunction
	GIT	Instrument Recording Error, Recovered Telemetry Data
	GMC	No Instrument Deployed due to Maintenance/Calibration
	GMT	Instrument Maintenance
	GPD	Power Down
	GPF	Power Failure / Low Battery
	GPR	Program Reload
	GQR	Data Rejected Due to QA/QC Checks
	GSM	See Metadata
	_	

Sensor Errors

SDG	Suspect due to sensor diagnostics
SIC	Incorrect Calibration Constant, Multiplier or Offset
SIW	Incorrect Wiring
SMT	Sensor Maintenance
SNV	Negative Value
SOC	Out of Calibration
SQR	Data rejected due to QAQC checks
SSN	Not a Number / Unknown Value
SSM	Sensor Malfunction
SSR	Sensor Removed
Comments	
CAF	Acceptable Calibration/Accuracy Error of Sensor
CCU	Cause Unknown
CDE	D. A. Brick, I'm

- - CDF Data Appear to Fit Conditions
 - Snow melt from previous snowfall event CML
 - CRE* Significant Rain Event
 - CSM*See Metadata
 - CVT*Possible Vandalism/Tampering

13) Other remarks/notes –

Data are missing due to equipment or associated specific sensors not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

Small negative PAR values are within range of the sensor and are due to normal errors in the sensor and the CR1000 Datalogger. The Maximum signal noise error for the Licor sensor is +/- 2.214 mmoles/m2 over a 15 minute interval.

Relative Humidity data greater than 100 are within range of the sensor accuracy of +/-3%.

Please note that the 3001 MET One Wind Set has an offset of 0.2 and does not record values of 0.

A historic rain event affected South Carolina from October 1-5, 2015. A stalled front offshore combined with deep tropical moisture streaming northwest into the area ahead of a strong upper level low pressure system to the west and Hurricane Joaquin well to the east. This led to historic rainfall with widespread amounts of 15-20 inches and localized amounts over 25 inches, mainly in the Charleston tri-county area. The F_Record column has been coded with {CRE} for this event from October 1, 2015 00:15 through October 6, 2015 00:00.

Data recorded for all parameters (with the exception of cumulative precipitation) at the midnight timestamp (00:00) are the 15 minute averages and totals for the 23:45-23:59 time period of the previous day. Cumulative precipitation data at the midnight timestamp (00:00) are the sum of raw (unrounded) precipitation data from 00:00 to 23:59 of the previous day. Summing each individual 15-minute total precipitation value from the same period will result in small differences from cumulative precipitation due to rounding. It is especially important to note how data at the midnight timestamp are recorded when using January 1st and December 31st data. Note: Cumulative precipitation is no longer available via export from the CDMO. Please contact the Reserve or the CDMO for more information or to obtain these data.

The F_Record column is coded with {CSM} for the entire year, with the exception of the {CRE} event in October. The battery began to fail during January 2015 resulting in intermittent data collection. The power failures continued on and off through June. During the summer months the logger collected data more regularly, most likely due to better weather conditions that allowed the solar panels to recharge the battery. With cloudy rainy conditions at the beginning of October the battery was no longer able to recharge and failed again until it was replaced in November 2015. The data appear to be accurate during times when we did not flag it as suspect or rejected, however, it is important to note that much of it was collected with a failing battery.

During 2017 the CDMO discovered an incorrect line in the CR1000 programming. If RHumidity>100 And RHumidity<108 Then RHumidity=100. A decision was made by the DMC during 2006 to discontinue correcting >100 RH values to 100. This change was never made in our program and has remained in each updated version until it was removed during 2017. By correcting all values >100 during data collection we may have missed erroneous values that could have indicated a problem with the RH sensor. CSM coding was added to all RH data from 2007 until the programming change in 2017.

All Parameters Blanket Statement for Bennett's Point Weather Station

Rejected Data (Flag <-3>)

Beginning on 01/15/2015 23:30 and continuing through 06/01/2015 10:45, data were rejected following periods of missing data due to a failing battery. Values are flagged as <-3> [GPF] (CSM).

Data are rejected following periods of missing data from 10/01/2015 at 22:15 to 11/25/2015 at 11:45 due to power failure: Values are flagged as <-3> [GPF] (CSM)]. The battery was replaced on 11/25/2015 at 11:30.

Missing Data (Flag <-2>)There are periods of missing data between 01/15/2015 23:15 and 06/01/2015 10:30 and between 10/01/2015 22:00 and 11/25/2015 09:15 due to battery failure. Values are flagged <-2> [GPF] (CSM).

Suspect Data (Flag <1>)

Values recorded during the periods in between the gaps of data that are missing are considered suspect, unless already rejected (see above). The data were flagged as suspect since significant periods of data are missing for those days. There is also a chance that even though the data appear to be accurate, battery voltage drops over the 15 minute interval could have resulted in missing 5-second reading that are used to calculate averages and totals. Although the battery was replaced on 11/25/2015 11:30, data were still flagged as suspect through the end of the day since a significant portion of data were missing for that day. Data are flagged as <1> [GPF] (CSM).

Temperature/Relative Humidity

Rejected Data (Flag <-3>)

Missing Data (Flag <-2>)

Suspect Data (Flag <1>)

Barometric Pressure

Rejected Data (Flag <-3>)

Missing Data (Flag <-2>)

Suspect Data (Flag <1>)

Wind Speed/Direction

Rejected Data (Flag <-3>)

Missing Data (Flag <-2>)

Suspect Data (Flag <1>)

Total Precipitation

Rejected Data (Flag <-3>)

Missing Data (Flag <-2>)

Suspect Data (Flag <1>)

Total PAR

Rejected Data (Flag <-3>)

Large negative PAR reading that occurred during June and July 2015 were rejected and marked as <-3> [SNV] (CSM).

Missing Data (Flag <-2>)

Suspect Data (Flag <1>)

PAR data for 2015 dataset is commented due to elevated nighttime PAR readings. All nighttime PAR readings greater than 0.0 mmoles/m2 are flagged as suspect <1> (CSM). Those data values appear satisfactory; however, data users should be aware of possible data inconsistencies. http://www.sunrisesunset.com was used to determine the cutoff between daytime and nighttime. Moisture seeping into the sensor and/or sensor cable is thought to be the cause for the elevated nighttime PAR, however it is still under investigation. Negative PAR readings are flagged as <1> (CAF). Where there is overlap between either suspect elevated or suspect negative PAR and suspect due to the power failure, the PAR data were flagged and coded as <1> [GPF] (CSM).

Cumulative Precipitation

Rejected Data (Flag <-3>)

Beginning with the battery failure 01/15/2015 and continuing through 06/01/2015 and following the battery replacement on 11/25/2015 11:30 through the end of the day cumulative precipitation values were rejected. Cumulative precipitation values were to be stored on the CR1000 and did not reset as expected when midnight time stamps were missing. Therefore, we do not know how accurate cumulative precipitation values are following the periods of missing data. Rejected cumulative precipitation values are flagged as <-3> [GPF] (CSM). Following the battery replacement on 11/25/2015 NANs were recorded for cumulative precipitation. Those data were rejected as <-3> [SSN] (CSM).

Missing Data (Flag <-2>)

Suspect Data (Flag <1>)

14) Station History

Bennett's Point:

2001- Station became active with CR10X data logger. No data collected until **March** due to battery issues. Data collection stopped in **June**. PC208W software used to download data. Parameters measured are: temperature, humidity, barometric pressure, rainfall, wind speed and direction and PAR. Probes are located on 3-meter galvanized poles on top of control box.

2002- Data collection resumed in January

2002- NADP – National Atmospheric Deposition Program – began in January

2003- All new probes installed on May 3 and old ones sent back to be calibrated.

2003- A 15-foot galvanized tower is installed on which the probes are positioned

2005- All newly calibrated probes installed on August 22

2006- CR10X data logger replaced with the CR1000 data logger and PC208W software replaced with LoggerNet Software in **June 29**

2006- NL115 Ethernet cable installed to allow for downloading of data and troubleshooting problems at Charleston Office.

2006- GOES satellite telemetry equipment installed to view real-time weather data.

2006- Rain tipping bucket calibrated on July 18

2006- NL115 Ethernet cable cut by workers in December

2007- NL115 Ethernet cable replaced and squirrels chewed through wire. Lost connection in **Sept.**

2007 - NADP - National Atmospheric Deposition Program - ended in December

2008- New program upload with Cumulative Precipitation parameter added in March

2008- All newly calibrated probes installed on April 22

2009- All newly calibrated probes installed on September 30

2010- Rain tipping bucket calibrated on January 1

2010- Rain tipping bucket calibrated in March 18

2010 – Newly calibrated probes installed on **December 9** with the exception of the temperature probe.

2012 - Newly calibrated probes installed on March 16

2012 - New CR1000 installed on March 16

2012 - Rain bucket calibrated on June 7

2012 - Rain bucket calibrated on Dec 19

2013 - BP calibrated May 16

2013 - Newly calibrated Temp/RH sensor installed July 31

2014 - Newly calibrated probes installed Feb 27

2014 - Rain bucket calibrated on Feb 27

2014 - Rain bucket calibrated on March 31

2014 - Newly calibrated Temp/RH sensor installed July 23

2015 - New battery installed Nov 25

2016 – Weather sensors sent to be calibrated Jan 15

2016 - Newly calibrated sensors (all except PAR) installed April 18