Apalachicola (APA) NERR Nutrient Metadata January – December 2024 Latest Update: June 16, 2025

Note: This is a provisional metadata document; it has not been authenticated as of its download date. Contents of this document are subject to change throughout the QAQC process and it should not be considered a final record of data documentation until that process is complete. Contact the CDMO (cdmosupport@baruch.sc.edu) or reserve with any additional questions.

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons -

a) Reserve contacts:

Megan Lamb, Research Coordinator 108 Island Drive Eastpoint, FL 32328 850-670-7709 Megan.Lamb@FloridaDEP.gov

Ethan Bourque, Environmental Specialist II*
108 Island Drive
Eastpoint, FL 32328
850-670-7722
Ethan.Bourque@FloridaDEP.gov

*Main contact at Reserve

b) Laboratory Contacts:

Colin Wright
Chemistry Section
Florida Department of Environmental Protection
2600 Blair Stone Road
Tallahassee, FL 32399
850-245-8102
Colin.Wright@FloridaDEP.gov

Cheryl Swanson
Biology Section
Florida Department of Environmental Protection
2600 Blair Stone Road
Tallahassee, FL 32399
850-245-8171
Cheryl.Swanson@FloridaDEP.gov

Joshua Ayres Laboratory Support Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399 850-245-8077 Joshua.Ayres@FloridaDEP.gov

2) Research objectives –

Previous studies have shown the importance of river flow and flushing rates on nutrients and primary productivity in Apalachicola Bay. Similar studies have determined nitrogen and phosphorus budgets as well as nutrient limitations related to seasonality and river flow (Elder and Mattraw 1982, Frick et al. 1996, Mortazavi 1998, Twilley et al. 1999, Mortazavi 2000a, b, Mortazavi et al. 2001, Putland 2005, Edmiston 2008, Caffrey et al. 2013). There has been an ongoing controversy between the states of Florida, Georgia, and Alabama over the upstream diversion of water forover three decades. Approximately 88% of the Apalachicola River and Bay drainage basin is in Georgia and Alabama and historical flows are being threatened by upstream use. A tri-state compact between the states and approved by the US Congress, required negotiations between the states to develop a water allocation formula. The states were unable to come to an agreement and the compact expired. In 2013, following a regional drought, the state of Florida asked the court to issue an order requiring Georgia to reduce its consumption of water from the Apalachicola-Chattahoochee-Flint (ACF) River Basin. Florida contended that overconsumption of ACF Basin waters caused low flows in the Apalachicola River which caused serious damage to Florida's river ecosystem and oyster fisheries. In 2021 the Supreme Court of the United States dismissed Florida's case in State of Fla. v. State of Georgia, 141 S. Ct. 1175 (2021), concluding that Florida failed to show that Georgia's water use had caused a collapse in Florida's oyster fisheries. The research objectives of this study are to investigate short-term variability, long-term change, and the relationship of other environmental factors to the productivity of the Apalachicola Bay system as well as try to separate natural from man-made variability. Data from this monitoring project has also been used by the Florida Department of Environmental Protection (FLDEP) in support of Numeric Nutrient Criteria development and in the Watershed Information Network (WIN) database.

- a) Monthly grab sampling program: Samples are collected at eleven stations located across Apalachicola Bay to monitor spatial and temporal fluctuations in nutrient and chlorophyll-a concentrations across the bay. The stations were chosen to help determine the influence of the river, local rainfall, adjacent habitats, and anthropogenic impacts on the Bay. Sampling sites are in the lower Apalachicola River, in the coastal area, offshore of the barrier islands, at the SWMP datalogger locations (primary SWMP stations), and throughout the bay. Seasonal, climatic, and anthropogenic factors all impact river flow, which in turn affects nutrient and chlorophyll-a concentrations in the bay. Nutrient and chlorophyll-a concentrations are also influenced by biological activity, tidal action, wind direction and speed, and the hydrodynamics of the system.
- b) Diel sampling program: Diel sampling is performed once a month in conjunction with grab sampling for nutrients and chlorophyll-a concentration. The East Bay Surface water quality datalogger site (apaesnut) is utilized each month for placement of the sampler so that temporal water quality data may be compared with the spatial nutrient and chlorophyll-a data collected at this site. Studies by the Reserve and others have shown the influence of tidal action and runoff on other physical parameters in the bay (Estabrook 1973, Livingston 1978, Livingston and Duncan 1979, Edmiston 2008). Diel samples are collected over a 25-hour period thereby covering the lunar day of 24 hours 48 minutes.)

3) Research methods –

a) Monthly grab sampling program

Monthly grab samples are collected at eleven stations (see Table 1) within and adjacent to Apalachicola Bay. All grab samples are collected on the same day. Because of the distance between the stations, it is not always possible to collect all the samples several hours prior to low tide. Tidal condition, wave height, wind direction, speed, precipitation, and cloud cover are recorded for each station at the time of sampling but are not included in this dataset and are available upon request. Climatic data from the Apalachicola National Estuarine Research Reserve (ANERR) weather station is available online at www.nerrsdata.org. Sampling after heavy rain is avoided if possible. Water temperature, salinity, specific conductivity, dissolved oxygen, pH, total dissolved solids, and turbidity are measured at surface and bottom for each station with a YSI Pro DSS handheld meter. Surface measurements only are included in this dataset for temperature, salinity, pH, and dissolved oxygen (except for the East Bay Bottom station). Bottom measurements for temperature, salinity, specific conductivity, dissolved oxygen, pH, total dissolved solids, and turbidity are available on

request. Secchi data is also included in this dataset. All grab samples are analyzed at the Florida Department of Environmental Protection laboratory (FLDEP).

Additional samples are collected in conjunction with ANERR's nutrient grab sampling monthly at the West Pass (apawpnut), Dry Bar (apadbnut), Mid Bay (apambnut), East Bay Bridge (apaegnut), Sikes Cut (apascnut), and Cat Point (apacpnut) stations for the Florida Fish & Wildlife Conservation Commission (FWC) Red Tide Monitoring Program. Results may be obtained by contacting FWC directly at RTOMP_coordinator@myfwc.com.

Grab sample collection:

A submersible pump and flexible clear plastic tubing is used to collect water from a depth of 0.5 meters at all stations not associated with a SWMP datalogger site. At the Cat Point, Dry Bar, and Pilot's Cove SWMP datalogger stations, water samples are collected at a depth of approximately 1.5 meters below the surface to match the approximate depth of the probes of the data loggers deployed at these sites. At the East Bay datalogger station water samples are collected from surface (0.5 meters) and bottom (1.5 meters) depths, approximating the depths of the two dataloggers deployed at this site. Triplicate samples are collected every other month at one randomly selected primary SWMP station.

Grab sample filtration and handling:

Water from the submersible pump is delivered directly into the appropriate sample bottles. For samples requiring filtration, an in-line filter is attached to the end of the flexible tubing, and water filtered in this manner is delivered directly to the appropriate sample bottles. Necessary preservatives are added prior to water sample according to appropriate EPA protocols for nutrient sampling. Whole water samples for chlorophyll-a analysis are filtered at the FLDEP laboratory. All samples are placed on ice in the dark until delivery to the FLDEP laboratory. The submersible pump and tubing are flushed with ambient water prior to sample collection at each station. If an additional filter is needed at a site, either a new filter holder and filter will be used, or the current filter holder is rinsed with DI prior to addition of a new filter. A field blank is also run each month, using deionized water (DI) water for sample blank. The field blank is collected using the pump, tubing and filter as described above. All grab samples are delivered to the FLDEP laboratory 24 to 36 hours after collection.

b) Diel sampling program

Diel sampling is performed with an ISCO 3700 Portable Automated Sampler at the East Bay surface (apaesnut) station. The ISCO is deployed on a fixed platform located at the East Bay surface site. Generally, the ISCO is deployed at the beginning of the grab sample collection trip and retrieved the following morning. In some months, adverse weather conditions result in deployment of the ISCO sampler during a week other than the week of grab sample collection. The sampler is programmed to collect two 1000 ml water samples every 2.5 hours, over a 25-hour period at the same depth as the East Bay surface datalogger probes (0.5 m below surface). This captures a complete 24 hour 48-minute lunar-tidal cycle. The ISCO sampler is programmed to purge the suction line before and after each sample collection. The center of the ISCO sampler is filled with ice packs to aid in sample preservation. All samples are placed on ice upon retrieval of the ISCO sampler at the end of the sampling period. Nutrient sample filtration is performed at ANERR laboratory within one hour of retrieval from the ISCO sampler. Whole water samples for chlorophyll-a analysis are filtered at the FLDEP laboratory. All diel samples are delivered to the FLDEP laboratory within 36 hours of the first sample collection time. Each month a diel blank sample is included in the ISCO sampler. Two bottles are filled with DI water prior to ISCO deployment in the field site, and are maintained in the sampler, placed on ice, filtered, and delivered to the laboratory with the other field samples. Note: No duplicate diel samples are taken, however there is some overlap with monthly grabs collected at the East Bay Surface station and deployment of the ISCO sampler.

Equipment QAQC and maintenance - Grab and Diel Sampling Program:

The submersible pump, tubing, and filter holders used in the field are acid rinsed with 10% Hydrochloric Acid and triple rinsed with DI water after each sampling trip. Laboratory items such as the filtration funnels

and receivers are acid washed with 10% Hydrochloric Acid and triple rinsed with DI water after each sampling event. Diel sample collection bottles used in the ISCO automated sampler are acid washed and triple rinsed with DI water after each sampling event. The ISCO automated sampler tubing is acid washed and triple rinsed with DI water after each sampling event. The overall condition of the pump and tubing is checked each month prior to deployment and tubing is replaced as needed, and per the CDMO SOP replacement schedule. New, unused sample bottles are supplied by FLDEP laboratory for each grab sampling event. The calibration of the YSI Pro DSS is checked before and after each sampling event.

4) Site location and character -

Site name	East Bay Bottom datalogger and nutrient station
Latitude and longitude	29.7858 N, 84.8752 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.38 m
Salinity range (psu)	0 to 30 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), East River, Tate's Hell and East River Marshes Runoff
Water depth (meters, MLW)	Estimate: 1.7 m
Sonde distance from bottom (meters)	Sonde: 0.3 m; Depth Sensor: 0.5 m
Bottom habitat or type	Soft sediment, primarily silt and clay, no vegetation, historic oyster bar
Pollutants in area	Wastewater, septic tanks
Description of watershed	Bay station up near East River mouth

Site name	East Bay Surface datalogger and nutrient station
Latitude and longitude	29.7858 N, 84.8752 W
Tidal range (meters)*	Estimate: Mean Range of Tide (MN): 0.38 m
Salinity range (psu)	0 to 30 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), East River, Tate's Hell and East River Marshes Runoff
Water depth (meters, MLW)*	Estimate: 1.7 m
Sonde distance from bottom (meters)	Sonde: 1.7 m; Depth sensor: 1.9 m
Bottom habitat or type	Soft sediment, primarily silt and clay, no vegetation
Pollutants in area	Wastewater, septic tanks
Description of watershed	Bay station up near East River mouth

Site name	Cat Point datalogger and nutrient station
Latitude and longitude	29.7021 N, 84.8802 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.4 m
Salinity range (psu)	0 to 32 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), Tate's Hell State Forest Runoff
Water depth (meters, MLW)	Estimate: 1.8 m
Sonde distance from bottom (meters)	Sonde: 0.3 m; Depth Sensor: 0.5 m
Bottom habitat or type	Oyster bar, no vegetation except algae on oysters
Pollutants in area	Wastewater, septic tanks
Description of watershed	Bay station, historically important oyster bar

Site name	Dry Bar datalogger and nutrient station
Latitude and longitude	29.6747 N, 85.0584 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.33 m
Salinity range (psu)	0 to 34 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), St. Vincent Island runoff, Apalachicola mainland area runoff
Water depth (meters, MLW)	Estimate: 1.7 m
Sonde distance from bottom (meters)	Sonde: 0.3 m; Depth Sensor: 0.5 m
Bottom habitat or type	Oyster bar, no vegetation except algae on oysters
Pollutants in area	Wastewater, septic tanks
Description of watershed	Bay station, historically important oyster bar

Site name	West Pass nutrient station
Latitude and longitude	29.6379 N, 85.0890 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.7
Salinity range (psu)	1.8 to 36.0 psu

Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), East River, Tate's Hell and East River Marshes Runoff
Water depth (meters, MLW)	Estimate: 5.0 m
Sample depth (meters)	0.5 m
Bottom habitat or type	Sand
Pollutants in area	Wastewater, septic tanks
Description of watershed	This site is in the pass between two uninhabited barrier islands, the state owned and managed Cape St. George Island and St. Vincent National Wildlife Refuge. The sampling site is influenced by the flow of the Apalachicola River and high salinity water coming through West Pass.

Site name	Pilots Cove datalogger and nutrient station
Latitude and longitude	29.60133 N, 85.02765 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.31 m
Salinity range (psu)	0 to 34 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), St. Vincent Island runoff, Little St. George Island runoff
Water depth (meters, MLW)	Estimate: 2.2 m
Sonde distance from bottom (meters)	Sonde: 0.3 m; Depth Sensor: 0.5 m
Bottom habitat or type	Sand bottom, seagrass bed (Halodule wrightii)
Pollutants in area	Wastewater, septic tanks
Description of watershed	Bay station, barrier island side

Site name	Mid Bay nutrient station
Latitude and longitude	29.6677 N, 84.9940 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.7 m
Salinity range (psu)	0.2 to 35.2 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), East River, Tate's Hell and East River Marshes Runoff
Water depth (meters, MLW)	Estimate: 2.2 m
Sample depth (meters)	0.5 m
Bottom habitat or type	Sandy silt

Pollutants in area	Wastewater, septic tanks
Description of watershed	This sampling site is in central Apalachicola Bay. The site is roughly equidistant from state owned and managed Cape St. George Island (four miles distant), St. Vincent National Wildlife Refuge (six miles distant), and single family residential and commercial use in the Apalachicola area (four miles distant). This site is approximately 2.5 kilometers from the intercoastal waterway channel. The sampling site is influenced by the flow of the Apalachicola River and high salinity water coming through Sikes Cut and West Pass.

Site name	East Bay Bridge nutrient station
Latitude and longitude	29.7308 N, 84.9452 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.7 m
Salinity range (psu)	0 to 30.7 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), East River, Tate's Hell and East River Marshes Runoff
Water depth (meters, MLW)	Estimate: 1.6 m
Sample depth (meters)	0.5 m
Bottom habitat or type	Silty Clay
Pollutants in area	Wastewater, septic tanks
Description of watershed	This site is located near the western section of the US Highway 98 bridge connecting Apalachicola and Eastpoint. The bridge also serves as the boundary line between East Bay and Apalachicola Bay. Nearby upland areas consist of residential and commercial use in the areas surrounding the cities of Apalachicola and Eastpoint. The sampling site is influenced by flows from the Apalachicola River and distributaries including the Little St. Marks River, St. Marks River, and East River.

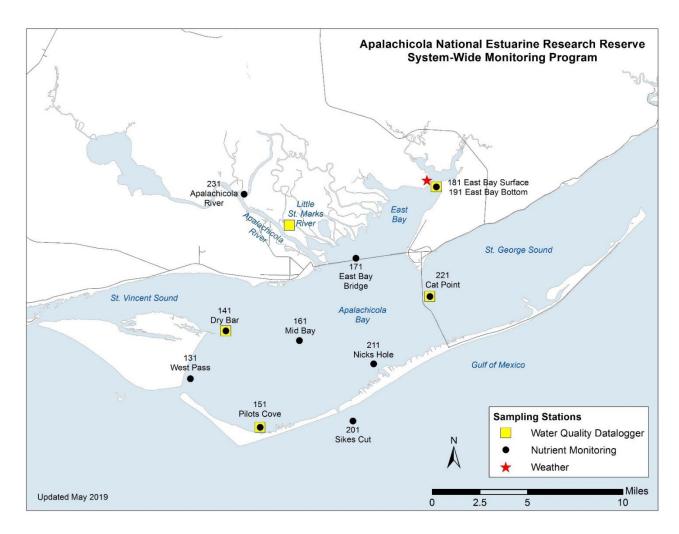
Site name	Sikes Cut offshore nutrient station
Latitude and longitude	29.6067 N, 84.9467 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.7 m
Salinity range (psu)	21.7 to 35.8 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), East River, Tate's Hell and East River Marshes Runoff
Water depth (meters, MLW)	Estimate: >5.0 m
Sample depth (meters)	0.5 m

Bottom habitat or type	Sand
Pollutants in area	Wastewater, septic tanks
Description of watershed	This site was selected to characterize true marine water and is located south of Sikes Cut in the Gulf of Mexico. The site is near the eastern portion of state owned and managed Cape St. George Island and near the western end of St. George Island in an area consisting of single family and vacation homes. Sikes Cut allows tidal exchange of high salinity water from the Gulf of Mexico and lower salinity water from Apalachicola Bay. Sikes Cut is an important pass utilized by commercial and recreational vessels.

Site name	Nicks Hole nutrient station
Latitude and longitude	29.6504 N, 84.9289 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.7 m
Salinity range (psu)	0.5 to 35.4 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), East River, Tate's Hell and East River Marshes Runoff
Water depth (meters, MLW)	Estimate: 1.0 m
Sample depth (meters)	0.5 m
Bottom habitat or type	Sand hottom, seagrass hed (Halodule wrightii)
Pollutants in area	Wastewater, septic tanks
Description of watershed	This site is near single family and vacation home use on St George Island. A small airport utilized by private aircraft is also located near Nicks Hole. The site is tidally influenced by high salinity water from Sikes Cut and by flows from the Apalachicola River

Site name	River nutrient station
Latitude and longitude	29.7791 N, 85.0434 W
Tidal range (meters)	Estimate: Mean Range of Tide (MN): 0.7 m
Salinity range (psu)	0 to 0.1 psu
Type and amount of freshwater input	Unquantified due to diverse runoff – Apalachicola River (and distributaries), East River, Tate's Hell and East River Marshes Runoff
Water depth (meters, MLW)	Estimate: 3.5 m
Sample depth (meters)	0.5 m
Bottom habitat or type	Sandy silt

Pollutants in area	Wastewater, septic tanks
Description of watershed	This site was selected to characterize fresh water in the Apalachicola River. The site is in the central channel of the river approximately 9.5 kilometers north and upstream of the river mouth and the residential and commercial areas of Apalachicola. Adjacent areas are state owned and managed forested floodplain. The site is influenced by the Apalachicola River flow.


All [reserve name] NERR historical nutrient/pigment monitoring stations:

Station Code	SWMP Status	Station Name	Location	Active Dates	Reason Decommissioned	Notes
apawpnut	S	West Pass	29° 38' 16.44 N, 85° 5' 20.40 W	04/01/2002 - current	NA	NA
apadbnut	Р	Dry Bar	29° 40' 28.92 N, 85° 3' 29.88 W	04/01/2002 - current	NA	NA
apapcnut	S	Pilot's Cove	29° 36' 28.44 N, 85° 1' 10.56 W	04/01/2002 - 11/27/2017	*See note	NA
apapcnut	S	Pilot's Cove	29° 36' 4.79 N, 85° 1' 39.54 W	1/10/2018 - current	NA	NA
apambnut	S	Mid Bay	29° 40′ 3.72 N, 84° 59′ 38.40 W	04/01/2002 - current	NA	NA
apaegnut	S	East Bay Bridge	29° 43' 50.88 N, 84° 56' 42.72 W	04/01/2002 - current	NA	NA
apaesnut	Р	East Bay Surface	29° 47' 8.88 N, 84° 52' 30.72 W	04/01/2002 - current	NA	NA
apaebnut	Р	East Bay Bottom	29° 47' 8.88 N, 84° 52' 30.72 W	04/01/2002 - current	NA	NA
apascnut	S	Sikes Cut Offshore	29° 36' 24.12 N, 84° 56' 48.12 W	04/01/2002 - current	NA	NA
apanhnut	S	Nick's Hole	29° 39' 1.44 N, 84° 55' 44.04 W	04/01/2002 - current	NA	NA
apacpnut	Р	Cat Point	29° 42' 7.68 N, 84° 52' 48.72 W	04/01/2002 - current	NA	NA
aparvnut	S	River	29° 46' 44.76 N, 85° 2' 36.24 W	04/01/2002 - current	NA	NA

^{*}The Pilot's Cove nutrient station was moved from its old location to the Pilots Cove water quality datalogger station 1.2 km away. The Pilot's Cove datalogger station was a new station approved by DMC as a secondary SWMP station in fall of 2016. Following this new station, ANERR staff wanted to have both the nutrients and water quality sampled at the same location, allowing us to more closely couple the nutrient data with the water quality readings

that are now being collected at the new water quality site. ANERR sampled all nutrient and p-chem parameters at both stations monthly during 2017 to show that there is no statistically measurable difference in parameters between the locations, which is why the new location retained the Pilot's Cove station name and number rather than becoming a new station. This station move was approved by the CDMO Data Management Committee in late 2017 and took effect in January 2018.

Figure 1: ANERR SWMP Station locations.

5) Coded variable definitions –

apacpnut = Apalachicola Reserve nutrient data for Cat Point apadbnut = Apalachicola Reserve nutrient data for Dry Bar apaebnut = Apalachicola Reserve nutrient data for East Bay Bottom apaegnut = Apalachicola Reserve nutrient data for East Bay Bridge apaesnut = Apalachicola Reserve nutrient data for East Bay Surface apambnut = Apalachicola Reserve nutrient data for Mid Bay apanhnut = Apalachicola Reserve nutrient data for Nicks Hole apapcnut = Apalachicola Reserve nutrient data for Pilots Cove aparvnut = Apalachicola Reserve nutrient data for River apascnut = Apalachicola Reserve nutrient data for Sikes Cut apawpnut = Apalachicola Reserve nutrient data for West Pass

6) Data collection period -

Nutrient monitoring began in April 2002 at all stations listed. Sampling has been performed monthly at all stations, unless otherwise noted. This table lists collection times for all nutrient and chlorophylla samples in 2024. The Start and End date and times listed below reflect the times that the first and last diel samples were collected for each monthly diel sampling event. Grab sample end time is not recorded in the field. Grab sample collection, filtering, and icing are completed within 10 minutes or less depending upon field conditions at the time of sampling. Time is coded based on a 2400-hour clock and is referenced to Eastern Standard Time (EST), without Daylight Savings Time adjustments.

a) Samples date/times Monitoring Program 1 (Grab Samples)

Site	Date	Time	Site	Date	Time	Site	Date	Time
apacpnut	1/10/2024	14:10	apadbnut	1/10/2024	10:40	apaebnut	1/10/2024	8:22
apacpnut	1/10/2024	14:12	apadbnut	2/6/2024	10:47	apaebnut	2/6/2024	8:19
apacpnut	1/10/2024	14:14	apadbnut	3/7/2024	11:39	apaebnut	3/7/2024	8:20
apacpnut	2/6/2024	9:07	apadbnut	4/2/2024	10:27	apaebnut	4/2/2024	7:26
apacpnut	3/7/2024	9:05	apadbnut	4/30/2024	10:17	apaebnut	4/30/2024	7:21
apacpnut	3/7/2024	9:07	apadbnut	6/4/2024	9:43	apaebnut	6/4/2024	7:14
apacpnut	3/7/2024	9:09	apadbnut	6/25/2024	10:58	apaebnut	6/25/2024	7:25
apacpnut	4/2/2024	8:31	apadbnut	6/25/2024	10:58	apaebnut	8/13/2024	7:17
apacpnut	4/30/2024	8:11	apadbnut	6/25/2024	10:58	apaebnut	9/3/2024	7:38
apacpnut	6/4/2024	8:03	apadbnut	8/13/2024	10:00	apaebnut	10/1/2024	7:39
apacpnut	6/25/2024	8:20	apadbnut*	9/3/2024	9:45	apaebnut	12/3/2024	8:51
apacpnut	8/13/2024	8:12	apadbnut	10/1/2024	10:57			
apacpnut	9/3/2024	8:18	apadbnut	12/3/2024	10:51			
apacpnut	10/1/2024	8:49						
apacpnut	12/3/2024	9:27						
apacpnut	12/3/2024	9:29						
apacpnut	12/3/2024	9:31						
Site	Date	Time	Site	Date	Time	Site	Date	Time
apaegnut	1/10/2024	14:57	apaesnut	1/10/2024	8:20	apambnut	1/10/2024	10:20
apaegnut	2/6/2024	8:51	apaesnut	2/6/2024	8:17	apambnut	2/6/2024	11:26
apaegnut	3/7/2024	8:48	apaesnut	3/7/2024	8:18	apambnut	3/7/2024	12:16
apaegnut	4/2/2024	8:06	apaesnut	4/2/2024	7:24	apambnut	4/2/2024	11:00
apaegnut	4/30/2024	7:54	apaesnut	4/30/2024	7:23	apambnut	4/30/2024	10:48
apaegnut	6/4/2024	7:41	apaesnut	4/30/2024	7:25	apambnut	6/4/2024	10:00
apaegnut	6/25/2024	8:04	apaesnut	4/30/2024	7:27	apambnut	6/25/2024	11:22
apaegnut	8/13/2024	7:57	apaesnut	6/4/2024	7:12	apambnut	8/13/2024	10:14
apaegnut	9/3/2024	8:03	apaesnut	6/25/2024	7:25	apambnut*	9/3/2024	10:00
apaegnut	10/1/2024	8:33	apaesnut	8/13/2024	7:17	apambnut	10/1/2024	11:17
apaegnut	12/3/2024	9:10	apaesnut	9/3/2024	7:32	apambnut	12/3/2024	11:12

							1	
			apaesnut	9/3/2024	7:34			
			apaesnut	9/3/2024	7:36			
			apaesnut	10/1/2024	7:37			
			apaesnut	12/3/2024	8:49			
Site	Date	Time	Site	Date	Time	Site	Date	Time
apanhnut	1/10/2024	13:45	apapcnut	1/10/2024	12:40	aparvnut	1/10/2024	15:40
apanhnut	2/6/2024	9:44	apapcnut	2/6/2024	10:08	aparvnut	2/6/2024	12:02
apanhnut	3/7/2024	9:39	apapcnut	3/7/2024	10:42	aparvnut*	3/7/2024	12:50
apanhnut	4/2/2024	9:04	apapcnut	4/2/2024	9:30	aparvnut	4/2/2024	11:38
apanhnut	4/30/2024	8:47	apapcnut	4/30/2024	9:26	aparvnut	4/30/2024	11:20
apanhnut	6/4/2024	8:21	apapcnut	6/4/2024	9:02	aparvnut	6/4/2024	10:26
apanhnut	6/25/2024	8:37	apapcnut	6/25/2024	9:23	aparvnut	6/25/2024	11:55
apanhnut	8/13/2024	8:31	apapcnut	8/13/2024	9:22	aparvnut	8/13/2024	10:56
apanhnut	9/3/2024	8:35	apapcnut	9/3/2024	9:12	aparvnut	9/3/2024	7:38
apanhnut	10/1/2024	9:14	apapcnut	10/1/2024	9:55	aparvnut	10/1/2024	11:45
apanhnut	12/3/2024	9:56	apapcnut	12/3/2024	10:28	aparvnut	12/3/2024	11:45

Site	Date	Time	Site	Date	Time
apascnut*	1/10/2024	13:20	apawpnut	1/10/2024	12:00
apascnut*	2/6/2024	10:00	apawpnut*	2/6/2024	10:20
apascnut	3/7/2024	10:16	apawpnut	3/7/2024	11:16
apascnut*	4/2/2024	9:15	apawpnut	4/2/2024	10:00
apascnut	4/30/2024	9:07	apawpnut	4/30/2024	9:55
apascnut	6/4/2024	8:41	apawpnut	6/4/2024	9:20
apascnut	6/25/2024	8:56	apawpnut	6/25/2024	10:35
apascnut	8/13/2024	8:57	apawpnut	8/13/2024	9:38
apascnut	9/3/2024	8:51	apawpnut	9/3/2024	9:30
apascnut	10/1/2024	9:30	apawpnut	10/1/2024	10:35
apascnut*	12/3/2024	10:15	apawpnut*	12/3/2024	11:00

^{*}Samples marked with an * were not collected due to poor weather conditions.

b) Start and End Date/Time for Monitoring Program 2 (Diel Sampling)

Site	Start Date	Start Time	End Date	End Time
apaesnut	1/10/2024	8:30	1/11/2024	9:30
apaesnut	2/6/2024	8:15	2/7/2024	6:45
apaesnut	3/7/2024	8:15	3/8/2024	9:15
apaesnut	4/30/2024	7:30	5/1/2024	8:30
apaesnut	6/4/2024	8:15	6/5/2024	6:45
apaesnut	6/25/2024	8:00	6/26/2024	9:00
apaesnut	8/22/2024	7:00	8/23/2024	8:00
apaesnut	9/3/2024	7:45	9/4/2024	8:45

apaesnut	10/1/2024	7:45	10/2/2024	8:45
apaesnut	12/3/2024	9:00	12/4/2024	10:00

7) Associated researchers and projects-

As part of the SWMP long-term monitoring program, APA NERR also monitors 15-minute meteorological and water quality data which may be correlated with this nutrient/pigment dataset. These data are available at www.nerrsdata.org.

Other ongoing projects or data that relate to the nutrient monitoring project include:

ABSI CAB, 2024. Apalachicola Bay System Initiative Community Advisory Board Report and Recommendations for the Apalachicola Bay System Ecosystem-Based Adaptive Restoration and Management Plan Florida State University Marine Laboratory Special Report. 85pp.

Ahmadsharif, Ebrahim. Collaborative Graduate Fellowship Exploring Temporal Trends of Various Water Quality Constituents in the Apalachicola National Estuarine Research Reserve. FLDEP Agreement No. ANR03. 2024 - Ongoing.

Apalachicola NERR Staff. Distribution and density of fishes and benthic invertebrates in Apalachicola Bay. 2000 – Ongoing.

Apalachicola NERR Staff. Mangrove mapping and monitoring in the greater Apalachicola Bay area. 2014 – Ongoing.

Apalachicola NERR Staff. NERRs Emergent vegetation monitoring program. 2014 - Ongoing.

Apalachicola NERR Staff. NERRs Wetlands and Water Levels monitoring program. 2012 - Ongoing.

Caffrey, J. M., 2003. Production, respiration and net ecosystem metabolism in US estuaries. Environmental Monitoring and Assessments 81:207-219.

Caffrey, J. M., 2004. Factors controlling net ecosystem metabolism in the U.S. estuaries. Estuaries 27(1):90-101.

Caffrey, J. M., M. C. Murrell, K. S. Amacker, J. W. Harper, S. Phipps & M. S. Woodrey, 2013. Seasonal and interannual patterns in primary production, respiration, and net ecosystem metabolism in three estuaries in the northeast Gulf of Mexico. Estuaries and Coasts 10.1007/s12237-013-9701-5.

Corbett, D. R. & R. L. Iverson, 1999. Groundwater and Nutrient Dynamics on a Strip Barrier Island Served by Onsite Sewage Treatment and Disposal Systems in the Northeastern Gulf of Mexico Department of Oceanography. Vol Ph.D. Florida State University, Tallahassee, FL, 120pp.

Florida Department of Environmental Protection (FLDEP). Site-Specific Information in Support of Establishing Numeric Nutrient Criteria in Apalachicola Bay, Nutrient Criteria Technical Support Document. Division of Assessment and Restoration, FLDEP, July 2013.

Florida Department of Environmental Protection (FLDEP) Division of Environmental Assessment and Restoration Watershed Information Network (WIN). Ongoing. https://prodenv.dep.state.fl.us/DearWin/public/welcomeGeneralPublic?calledBy=GENERALPUBLIC#

Florida Fish and Wildlife Conservation Commission Red Tide HAB Monitoring Program. Ongoing. https://myfwc.com/research/redtide/monitoring/

Garwood, J. A., K. Allen, M. S. Lamb, K. A. Lewis, J. Harper & H. L. Edmiston, 2023. Using long-term ecological monitoring to evaluate how climate and human-induced disturbances impact nekton communities in a Northern Gulf of Mexico estuary. Hydrobiologia https://doi.org/10.1007/s10750-023-05206-6.

Geyer, N., M. Huettel & M. Wetz, 2018a. Biogeochemistry of a River-Dominated Estuary Influenced by Drought and Storms. Estuaries and Coasts 41(7): 2009-2023. 10.1007/s12237-018-0411-x. Geyer, N. L., M. Huettel & M. S. Wetz, 2018b. Phytoplankton Spatial Variability in the River-Dominated Estuary, Apalachicola Bay, Florida. Estuaries and Coasts 41(7):2024-2038. 10.1007/s12237-018-0402-y.

Gihring, T. Florida State University Ph.D. student, NOAA NERRs Graduate Fellowship 2005-2008 Award NA05NOS4201031. The role of oligohaline marshes as a source or sink of nitrogen to the Apalachicola Bay, Florida.

Havens, K., M. Allen, E. Camp, T. Irani, A. Lindsey, J. G. Morris, A. Kane, D. Kimbro, B. Pine & C. Walters, 2013. Apalachicola Bay oyster situation report. Vol TP-200. Florida Sea Grant.

Iverson, R., W. Landing, B. Mortazavi, J. Fulmer & F. G. Lewis, 1997. Apalachicola River and Bay Freshwater Needs Assessment: Nutrient Transport and Primary Productivity in the Apalachicola River and Bay.

Kimbro, D. L., J. Wilson White, Hanna Tillotson, Nikkie Cox, Megan Christopher, Owen Stokes-Cawley, Samantha Yuan, Timothy J. Pusack, Christopher D. Stallings, 2017. Local and regional stressors interact to drive a salinization-induced outbreak of predators on oyster reefs. Ecosphere 8(11).

Martinez-Colon, Michael. Benthic foraminifera and their microbiomes in oxic / anoxic estuaries. Florida A&M University. Ongoing.

Mortazavi, B., R. L. Iverson, W. M. Landing & W. Huang, 2000a. Phosphorus budget of Apalachicola Bay: a riverdominated estuary in the northeastern Gulf of Mexico. Marine Ecology Progress Series 198:33-42.

Mortazavi, B., R. L. Iverson, W. M. Landing, F. G. Lewis & W. Huang, 2000b. Control of phytoplankton production and biomass in a river-dominated estuary: Apalachicola Bay, Florida, USA. Marine Ecology Progress Series 198:19-31.

Mortazavi, B., Iverson, Richard L., Huang, Wenrui, Lewis, F. Graham, and Caffrey, Jane M., 2000. Nitrogen budget of Apalachicola Bay, a bar-built estuary in the northeastern Gulf of Mexico Marine Ecology Progress Series. Vol 195, 1-14.

Najjar, R., McGillis, W., Herrmann, M., and K. Hill. Collaborative Research: Estuarine metabolism and gas exchange determined from dissolved oxygen time series: method development, field evaluation, and application to historical data. NSF OCE Awards OCE-1924445 and OCE-1924559, 2020 – Ongoing.

Peterson, R. Florida State University Ph.D. student, NOAA NERRs Graduate Fellowship 2005-2008 Award NA05NOS4201041. Origin and fate of suspended particulates in the Apalachicola River: Impact on Apalachicola Bay.

Putland, J. N., 2005. Ecology of Phytoplankton, *Acartia tonsa*, and Microzooplankton in Apalachicola Bay, Florida. Doctoral Thesis, Florida State University.

Putland, J. N. & R. L. Iverson, 2007a. Ecology of *Acartia tonsa* in Apalachicola Bay, Florida, and implications of river water diversion. Marine Ecology Progress Series 340:173-187.

Putland, J. N. & R. L. Iverson, 2007b. Microzooplankton: major herbivores in an estuarine planktonic food web. Marine Ecology Progress Series 345:63-73.

Putland, J. N. & R. L. Iverson, 2007c. Phytoplankton biomass in a subtropical estuary: Distribution, size composition, and carbon:chlorophyll ratios. Estuaries and Coasts 30(5):878-885.

Putland, J. N., B. Mortazavi & R. L. Iverson, 2009. Changes in Phytoplankton and Bacterioplankton Biomass and Rate Processes in Apalachicola Bay, Florida, in Response to Reduction in River Discharge. Gulf of Mexico Science 27:109-122. doi.org/10.18785/goms.2702.04.

Putland, J. N., B. Mortazavi, R. L. Iverson & S. W. Wise, 2014. Phytoplankton biomass and composition in a river-dominated estuary during two summers of contrasting river discharge. Estuaries and Coasts 37:644-679. 10.1007/s12237-013-9712-2.

Rabby, S. H., L. Rahimi, E. Ahmadisharaf, M. Ye, J. A. Garwood, E. S. Bourque & H. Moradkhani, 2024. Dynamic disparities in inorganic nitrogen and phosphorus fluxes into estuarine systems under different flow regimes and streamflow droughts. Water Research 264:122238. https://doi.org/10.1016/j.watres.2024.122238.

Smith, S. Post-Doctoral Research Project. NOAA Environmental Cooperative Science Center / Florida A&M University Environmental Sciences Institute. 2007-2009. Drought, Reduced River Flow and Sea Level Rise: Exploring Climate Impacts on Carbon and Nitrogen Cycling in the Apalachicola Bay System.

Surratt, D., 2005. Nutrient geochemistry in Apalachicola Bay, Florida (USA). Florida A&M University. Ph.D. thesis, 208pp.

Surratt, D., J. Cherrier, L. Robinson & J. Cable, 2008. Chronology of Sediment Nutrient Geochemistry in Apalachicola Bay, Florida (U.S.A). Journal of Coastal Research 243:660-671. 10.2112/06-0717.1.

Tucker, K., 2011. Effects of river flow and rainfall on chlorophyll-a in Apalachicola River. Florida A&M University. Masters thesis, 39pp.

Viveros Bedoya, P. A., 2014. Phytoplankton biomass and composition in Apalachicola Bay, A subtropical river dominated estuary in Florida. University of Florida. Ph.D. thesis, 123pp.

8) Distribution -

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: www.nerrsdata.org; accessed 12 October 2024.

NERR nutrient data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page www.nerrsdata.org. Data are available in comma separated version format.

II. Physical Structure Descriptors

9) Entry verification –

ANERR personnel download data from the FLDEP laboratory roughly a month after sampling, following notification from the laboratory that sample results are available. Data and final reports are downloaded through the laboratory's in-house LIMS software program. Raw data and sample hold times are downloaded as Microsoft Excel 1997-2003 workbooks (.xls) files and final laboratory reports are downloaded as .pdf documents. Data are verified for completeness and notes are made of any communications with the laboratory regarding suspect data. On a quarterly basis, raw nutrient and chlorophyll-a data is copied and pasted into quarterly files and hand-held physical chemistry readings taken at the time of sampling are added to these files. Preliminary QAQC and samples falling below MDLs are noted on a quarterly basis. Units are consistent with those used by CDMO so unit conversion is not necessary. At the end of the calendar year, quarterly files are compiled and this data is copied into a single working file for secondary QAQC using the CDMO Nutrient QAQC Excel macro.

Nutrient data are entered into a Microsoft Excel worksheet and processed using the NutrientQAQC Excel macro. The NutrientQAQC macro sets up the data worksheet, metadata worksheets, and MDL worksheet; adds chosen parameters and facilitates data entry; allows the user to set the number of significant figures to be reported for each parameter and rounds using banker's rounding rules; allows the user to input MDL values and then automatically flags/codes measured values below MDL and inserts the MDL; calculates parameters chosen by the user and automatically flags/codes for component values below MDL, negative calculated values, and missing data; allows the user to apply QAQC flags and codes to the data; produces summary statistics; graphs selected parameters for review; and exports the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database.

Data from this worksheet are graphed by site, by analyte to assist in the secondary QAQC process. Additional information including past years data, river flow data, meterological data and conditions including rainfall, wind events, tropical events, and other notes about events such as dredging, restoration projects, and more that staff believe could influence water quality conditions are assembled to aid in this process. MDL tables (Section 12), Sample hold time tables (Section 17) are generated by R scripts from the laboratory workbook files. All data are carefully checked and metadata is created. Data and metadata are reviewed by at least two staff members prior to submission to CDMO.

From January 2018 to present, Ethan Bourque was responsible for these tasks.

10) Parameter titles and variable names by category -

Required NOAA NERRS System-wide Monitoring Program nutrient parameters are denoted by an asterisk "*".

	Data Category	Parameter	Variable Name	Units of Measure
--	---------------	-----------	---------------	------------------

Phosphorus and Nitrogen:

*Orthophosphate	PO4F	mg/L as P
Total Phosphorus	TP	mg/L as P
*Ammonium, Filtered	NH4F	mg/L as N
*Nitrite + Nitrate, Filtered	NO23F	mg/L as N
Dissolved Inorganic Nitrogen	DIN	mg/L as N
Total Kjeldahl Nitrogen whole	TKN	mg/L as N
Total Nitrogen	TN	mg/L as N

Plant Pigments:

*Chlorophyll a	CHLA_N	μg/L
Phaeophytin	PHEA	μg/L
Uncorrected Chlorophyll-a	UncCHLA_N	μg/ L

Other Lab Parameters:

Total Suspended Solids	TSS	mg/L
Total Alkalinity	TA	mg CaCO3/L

Field Parameters:

Water Temperature	WTEM_N	°C
Salinity	SALT_N	ppt
Dissolved oxygen	DO_N	mg/L
% Saturated dissolved oxygen	DO_S_N	%
pH	PH_N	SU
Turbidity	TURB_N	NTU
Secchi Disk Depth	SECCHI	meters

Notes:

- 1. Time is coded based on a 2400 clock and is referenced to Standard Time.
- 2. Reserves have the option of measuring either NO2 and NO3 or they may substitute NO23 for individual analyses if they can show that NO2 is a minor component relative to NO3.
- 3. Biochemical oxygen demand (BOD) was measured from whole water samples for the months of March, June, September, and December (quarterly) at all grab sampling stations except for apaebnut from June 2018 December 2020. These data are not available from CDMO but are available by contacting the Reserve directly.

11) Measured or calculated laboratory parameters –

a) Parameters measured directly

Nitrogen species: NH4F, NO23F, TKN

Phosphorus species: PO4F, TP

Other: UncCHLA_N, CHLA_N, PHEA, TSS

b) Calculated parameters

TN NO23F + TKN DIN NO23F + NH4F

12) Limits of detection –

All information in this section is provided by FLDEP laboratory.

a) FLDEP laboratory Method Detection Limit (MDL) determination:

The MDL is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from the method blank result. MDLs are determined using the method specified in the Federal Register, 40 CFR Part 136 Appendix B Revision 2, using LCSs prepared near the estimated detection limit as surrogates to estimate methodological noise for actual method blanks to directly measure methodological noise. If none of the method blanks give numerical results for an individual analyte, method blanks are not required for the determination of the MDL. Where the possibility exists for significant systematic bias from sample preparation and handling or from the analytical determinative step (typically inorganic analyses), bias is considered when calculating detection limits. Published MDLs may be set higher than experimentally determined MDLs to (1) avoid observed positive interferences from matrix effects or common reagent contaminants or (2) for reporting convenience (i.e., to group common compounds with similar but slightly different experimentally determined MDLs). MDLs are determined in a suitable analyte-free matrix when possible. For certain analytes and matrices, no suitable, analyte-free matrix may be available. In those cases, MDLs are determined in the absence of any matrix, but in the presence of all preparatory reagents carried through the full preparatory and determinative steps. LOD verification procedures may be found in SOP LB-031, Limit of Detection Verification. (From page 42 of FLDEP Laboratory Quality Manual 2024. The most current version of the manual and individual method SOPs can be accessed at: https://floridadep.gov/dear/floridadep-laboratory/content/dep-laboratory-quality-assurance-manual-and-sops).

b) 2024 base MDLs for Orthophosphate (PO4F), Nitrite + Nitrate (NO23F), ammonium (NH4F), Total Kjeldahl Nitrogen whole (TKN), and Total Suspended Solids (TSS), as reported by FLDEP laboratory. FLDEP SOPs state that the reported MDL for a sample may vary based on sample dilution. Base MDLs for Total Phosphorus (TP) as reported by FLDEP laboratory. FLDEP SOP states that "the applicable range for" the SEAL Analytical AQ2 "method is from the practical quantitation limit (PQL) of 0.050 to 1.0 mg P/L. The method detection limit (MDL) is 0.005 mg P/L. The range may be extended by dilution. All samples with concentrations below the PQL on the AQ2 are analyzed using the" Bran Luebbe "segmented flow analyzer (see DEP SOP NU-082)." FLDEP SOPs state that the reported MDL for a sample may vary based on sample dilution.

Parameter	Start Date	End Date	Nominal (Base) MDL	MDL Range	Date Revisited	SOP Name
NH4F	10/11/2023	06/30/2024	0.002	0.002 - 0.008	10/10/2023	NH3_NU-104.1.4
NH4F	07/01/2024	Current as of 05/19/2025	0.002	0.002 - 0.008	06/26/2024	NH3_NU-104-1.5
NO23F	7/21/2023	09/19/2024	0.004	0.004 - 0.008	7/21/2023	Nitrate_Nitrite_NU- 066-1.25
NO23F	09/20/2024	Current as of 05/19/2025	0.004	0.004 - 0.008	09/17/2024	Nitrate_Nitrite_NU- 066-1.26
TKN	7/10/2023	09/19/2024	0.08	0.080 - 0.16	6/27/2023	TKN_NU-092-1.13
TKN	09/20/2024	01/12/2025	0.08	0.080 - 0.16	09/17/2024	TKN_NU-092-1.14
TKN	01/13/2025	Current as of 05/19/2025	0.08	0.080 - 0.16	01/09/2025	TKN_NU-092-1.15
PO4F	8/18/2023	10/07/2024	0.004	0.004	8/18/2023	PO4_NU_070-1.23
PO4F	10/08/2024	Current as of 05/19/2025	0.004	0.004	10/02/2024	PO4_NU_070-1.24
TP	8/7/2023	10/07/2024	0.002	0.002 - 0.010	8/1/2023	TP_NU-082-1.17
ТР	10/08/2024	01/19/2025	0.002	0.002 - 0.010	10/03/2024	TP_NU-082-1.18
TP	01/20/2025	Current as of 05/19/2025	0.002	0.002 - 0.010	01/16/2025	TP_NU-082-1.19

TSS	10/4/2023	11/05/2024	2	2 - 15	10/3/2023	TSS_NU-051-3.27
TSS	11/06/2024	Current as of 05/19/2025	2	2 - 15	10/18/2024	TSS_NU-051-3.28
TA	08/18/2023	08/15/2024	0.65		08/15/2023	TA-06.08-4.10
TA	08/16/2024	Current as of 05/19/2025	0.65		08/15/2024	TA-06.08-4.11

^{*} FLDEP laboratory SOP statement regarding Total Suspended Solid (TSS) MDLs: "The practical range of determination is from the method detection limit (MDL) 2 mg/L (3.0 mg/L for samples with conductivity ≥ 15,000 µmhos/cm) to 20,000 mg/L."

c) FLDEP MDLs for the chlorophyll suite of components may change by station and month based on the need to dilute samples during processing. The base MDL listed in the FLDEP SOP is based on the maximum filtration volume and minimum extract volume and will therefore be the lowest MDL.

Base MDL values for ANERR 2024 plant pigment parameters:

Parameter	FLDEP SOP	SOP Vali	id Dates	MDL	MDL	Units	Revisited	
Tarameter	version	Start Date	rt Date End Date		Range	Cinto	Revisited	
Chlorophyll-a (Chla_N)	BB-029-2.11	3/21/2023	3/25/2024	0.82	0.82 - 4.1	ug/L	3/21/2023	
Chlorophyll-a (Chla_N)	BB-029-2.12	3/26/2024	3/25/2025	0.82	0.82 - 4.1	ug/L	3/20/2024	
Uncorrected Chlorophyll- a (UncChla_N)	BB-029-2.11	3/21/2023	3/25/2024	0.82	0.82 - 3	ug/L	3/21/2023	
Uncorrected Chlorophyll- a (UncChla_N)	BB-029-2.12	3/26/2024	3/25/2025	0.82	0.82 - 3	ug/L	3/20/2024	
Phaeophytin (PHEA)	BB-029-2.11	3/21/2023	3/25/2024	0.9	0.9 - 4.5	ug/L	3/21/2023	
Phaeophytin (PHEA)	BB-029-2.12	3/26/2024	3/25/2025	0.9	0.9 - 4.5	ug/L	3/20/2024	

The sample MDL is calculated based on the number of times a sample must be diluted. For example, if a CHL_A sample must be diluted to twice its volume, the base MDL of 0.55 ug/L is multiplied by a dilution factor of two (0.55 ug/L x 2) thus resulting in an MDL of 1.10 ug/L. For samples that fall below the MDL and their MDL is greater than the base MDL, individual sample MDLs are listed in the table below. These data have been flagged and coded as -4 SBL in the dataset.

13) Laboratory methods -

a) Parameter: NH4F

EPA Method: *350.1* This SOP is based upon EPA Method 350.1, Rev. 2.0 (1993) and SEAL Auto Analyzer Method G-427-14 Rev. 3.

Method Reference:

Method Descriptor: The sample is air-segmented and made alkaline in the donor stream. The ammonia molecules generated at this pH flow into the dialysis block holding the gas diffusion membrane. On the other side of the gas diffusion membrane is an acidic acceptor stream that the ammonia gas diffuses into. The ammonia reacts with salicylate and dichloro-isocyanuric acid at 37 °C to produce a blue-green color proportional to the ammonia concentration. Sodium nitroprusside is used as a catalyst. The absorbance is measured at 660 nm.

Preservation Method: Samples are filtered in the field, acidified to pH <2, placed on ice in the dark and analyzed within 28 days.

b) Parameter: PO4

EPA Method: *365.1*, Rev. 2.0 (1993), the Seal AutoAnalyzer3 method G-146-95 Rev. 3, and the Seal AutoAnalyzer 500 method A-036-19 Rev. 1.

Method Descriptor: Orthophosphate reacts with molybdenum (VI) and antimony (III) in an acid medium to form an antimony-phospho-molybdate complex. The complex is reduced with ascorbic acid to form a blue complex that absorbs at 880 nm.

Preservation Method: Samples are filtered in the field, placed on ice (not frozen), and analyzed within 48 hours of sample collection.

c) Parameter: TP

EPA Method: 365.1, Rev. 2.0 (1993) and Seal Method G-146-95 Rev. 3.

Method Descriptor: Prior to analysis the samples are prepared by autoclave digestion (DEP SOP NU-049) in which all phosphate containing compounds, both organic and inorganic, are hydrolyzed to generate orthophosphate ion (PO4 3-). During analysis orthophosphate forms a complex with molybdenum and antimony in an acid medium. This phosphoantimony/molybdenum complex is reduced with ascorbic acid and generates a blue colored solution. The intensity of this color is measured at 880 nm for total phosphate analysis.

Preservation Method: Samples are acidified in the field to pH <2, placed on ice (not frozen), and analyzed within 28 days of sample collection.

d) Parameter: NO23

EPA Method: 353.2, Rev 2.0 (1993) and Lachat method10-107-04-1-C. Diethylenetriaminepentaacetic acid (DTPA) is used ascomplexing agent instead of ethylenediamine tetraacetic acid (EDTA).

Method Descriptor: A sample is passed through a column containing granular copper-cadmium catalyst, which reduces nitrate to nitrite. The nitrite originally present plus the reduced nitrate can then are determined by colorimetry. The nitrite is diazotized with sulfanilamide and coupled with N-(1-naphthyl) ethylenediamine dihydrochloride to form a highly colored azo dye, which is measured at a wavelength of 520 nm.

Preservation Method: Samples are filtered in the field, acidified to pH < 2, placed on ice in the dark and analyzed within 28 days.

e) Parameter: TKN

EPA Method: 351.2, Rev. 2.0 (1993) and Seal AQ2 method EPA-111-A Rev. 4.

Method Descriptor: Prior to analysis, digestion converts free ammonia and organic nitrogen compounds to ammonium sulfate (DEP SOP NU-091). Ammonium reacts with salicylate and hypochlorite in a buffered, alkaline solution in the presence of sodium nitroferricyanide (pH = 12.4-12.7) to form the salicylic acid analog of indophenol blue. The blue-green color produced is measured at 660 nm.

Preservation Method: Whole water is acidified in the field to pH < 2, placed on ice in the dark and analyzed within 28 days.

f) Parameter: CHLA_N and UncCHLA_N and PHEA

EPA Method: 446.0, and Standard Methods 10200H

Method Descriptor: This method is used to determine the amount of chlorophyll-a and pheophytin-a in marine and freshwater algae by visible spectrophotometry. Uncorrected chlorophyll-a is calculated using the trichromatic equation. Corrected chlorophyll-a and pheophytin are calculated using the monochromatic equation. The absorption-peak-ratio (chlorophyll/pheophytin) is also determined. A sample is vacuum filtered onto a glass fiber filter. The filter is then macerated with a tissue grinder and steeped in 90% acetone to extract chlorophyll from the algal cells. The sample is clarified through centrifugation. The absorbance of the clarified extract is then measured on a spectrophotometer at 750, 665, 664, 647 and 630 nm wavelengths before and after a 90 second Hydrochloric acid acidification step.

Preservation Method: Whole water is collected in brown Nalgene bottles, placed on ice in the dark, and delivered to the FLDEP lab within 36 hours for filtration.

g) Parameter: TSS

Reference Method: 2540 D-2011

Method Descriptor: A well-mixed sample is filtered through a pre-weighed glass fiber filter. The filter and any residue are then dried to a constant weight at 103-105 °C. The filter is cooled in a desiccator, weighed and the result used to compute the TSS of the sample.

Preservation Method: Whole water is placed on ice in the dark for analysis within 7 days.

14) Field and Laboratory QAQC programs -

a) Precision

- i) Field Variability Grab and diel field blanks (using deionized water) are included in all monthly sampling events. ANERR staff collect field triplicate samples from separate grabs at one primary SWMP sampling station selected at random every other month. There are no field triplicates collected during diel sampling, though the first diel sample is taken at a similar time frame to the grab sample at that station and can be compared for similarity.
- ii) **Laboratory Variability** Method blanks and duplicate samples are run with every sample batch. Batches are groups of 20 or less samples that are analyzed concurrently. Precision is measured by Relative Percent Difference (RPD).
- iii) Inter-organizational splits None.

b) Accuracy

- i) Sample Spikes At least two sample spikes are performed with each sample batch. The acceptance limits for sample or spike duplicates is a RPD of less than 20% if both results are above the PQL. Laboratory fortified blanks are run with each sample batch, acceptance limits for recovery are 85-115%.
- ii) Standard Reference Material Analysis Check standards are included in each batch and at the beginning and end of each run. Check standard acceptance limits are 85-115% recovery. (FLDEP Central Laboratory NU-043-2.24).
- iii) Cross Calibration Exercises FDEP laboratory Chemistry and Biology sections participated in several cross calibration exercises in 2024. They include:
 - (1) Two rounds of required performance testing (PT) conducted in the spring and fall to maintain the lab's TNI certification
 - (2) The NERRS NUT Interlab Comparison
 - (3) A North Carolina Round Robin for chlorophyll analysis
 - (4) One round of a PT study conducted by USGS for metals and nutrients
 - (5) One study for cyanotoxins (microcystins, anatoxin-a, cylindrospermopsin) in recreational water conducted by Gold Standard Diagnostics

15) QAQC flag definitions -

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). QAQC flags are applied to the nutrient data during secondary QAQC to indicate data that are out of sensor range low (-4), rejected due to QAQC checks (-3), missing (-2), optional and were not collected (-1), suspect (1), and that have been corrected (5). All remaining data are flagged as having passed initial QAQC checks (0) when the data are uploaded and assimilated into the CDMO ODIS as provisional plus data. The historical data flag (4) is used to indicate data that were submitted to the CDMO prior to the initiation of secondary QAQC flags and codes (and the use of the automated primary QAQC system for WQ and MET data). This flag is only present in historical data that are exported from the CDMO ODIS.

- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

16) QAQC code definitions –

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the sample or sample collection, sensor errors document common sensor or parameter specific problems, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point. However, a record flag column (F_Record) in the nutrient data allows multiple comment codes to be applied to the entire data record.

General errors

GCM	Calculated value could not be determined due to missing data
GCR	Calculated value could not be determined due to rejected data
GDM	Data missing or sample never collected
GQD	Data rejected due to QA/QC checks
GQS	Data suspect due to QA/QC checks

GSM See metadata

Sensor errors

SBL	Value below minimum limit of method detection
SCB	Calculated value could not be determined due to a below MDL

Calculated value could not be determined due to a below MDL component

Calculation with this component resulted in a negative value SCC

Calculated value is negative **SNV**

Replicate values differ substantially SRD

Value above upper limit of method detection SUL

Parameter Comments

CAB	Algal bloom
-----	-------------

CDR Sample diluted and rerun

CHB Sample held beyond specified holding time

Ice present in sample vicinity CIP Flotsam present in sample vicinity CIF

Sample collected later/earlier than scheduled CLE

Significant rain event **CRE**

CSM See metadata

CUS Lab analysis from unpreserved sample

Record comments

CAB	Algal	bloom
-----	-------	-------

Sample held beyond specified holding time CHB

CIP Ice present in sample vicinity CIF Flotsam present in sample vicinity

Sample collected later/earlier than scheduled **CLE**

Significant rain event **CRE**

CSM See metadata

CUS Lab analysis from unpreserved sample

Cloud cover

CCL clear (0-10%)

scattered to partly cloudy (10-50%) **CSP**

partly to broken (50-90%) CPB

COC overcast (>90%)

CFY foggy CHY hazy

CCC cloud (no percentage)

```
Precipitation
  PNP
            none
  PDR
             drizzle
  PLR
            light rain
  PHR
            heavy rain
  PSQ
            squally
  PFQ
             frozen precipitation (sleet/snow/freezing rain)
  PSR
            mixed rain and snow
Tide stage
  TSE
            ebb tide
  TSF
             flood tide
  TSH
            high tide
  TSL
            low tide
Wave height
  WH0
            0 to < 0.1 meters
  WH1
            0.1 to 0.3 meters
  WH2
            0.3 to 0.6 meters
  WH3
            0.6 \text{ to} > 1.0 \text{ meters}
  WH4
            1.0 to 1.3 meters
  WH5
            1.3 or greater meters
Wind direction
  N
             from the north
  NNE
             from the north northeast
  NE
             from the northeast
  ENE
             from the east northeast
  Е
             from the east
  ESE
             from the east southeast
  SE
             from the southeast
  SSE
             from the south southeast
  S
             from the south
  SSW
             from the south southwest
  SW
             from the southwest
  WSW
             from the west southwest
  W
             from the west
  WNW
             from the west northwest
  NW
             from the northwest
  NNW
             from the north northwest
Wind speed
  WS0
            0 to 1 knot
  WS1
            > 1 to 10 knots
  WS2
            > 10 to 20 knots
  WS3
            > 20 to 30 knots
  WS4
             > 30 to 40 knots
  WS5
             > 40 \text{ knots}
```

17) Other remarks/notes -

Data may be missing due to problems with sample collection or processing. Laboratories in the NERR System submit data that are censored at a lower detection rate limit, called the Method Detection Limit or MDL. MDLs for specific parameters are listed in the Laboratory Methods and Detection Limits Section (Section II, Part 12) of this document. Concentrations that are less than this limit are censored with the use of a QAQC flag and code, and the reported value is the method detection limit itself rather than a measured value. For example, if the measured concentration of NO23F was 0.0005 mg/l as N (MDL=0.0008), the reported value would be 0.0008 and would be

flagged as out of sensor range low (-4) and coded SBL. In addition, if any of the components used to calculate a variable are below the MDL, the calculated variable is removed and flagged/coded -4 SCB. If a calculated value is negative, it is rejected and all measured components are marked suspect. If additional information on MDL's or missing, suspect, or rejected data is needed, contact the Research Coordinator at the reserve submitting the data.

Note: The way below MDL values are handled in the NERRS SWMP dataset was changed in November of 2011. Previously, below MDL data from 2007-2010 were also flagged/coded, but either reported as the measured value or a blank cell. Any 2007-2011 nutrient/pigment data downloaded from the CDMO prior to November of 2011 will reflect this difference.

Sample hold times for 2024: NERRS SOP allows nutrient samples to be held for up to 24 hours if held at 4°C with no preservation, for NH4F and NO23F up to 28 days if acidified and held at 4°C, and up to 28 days (CHLA for 30 days) if held at -20°C. Tier II parameters, with a few exceptions, are subject to the same sample hold times. In all cases, up to an additional 5 days is allowed for collecting, processing, and shipping samples. Samples held beyond that time period are flagged suspect and coded CHB in the data set.

Station	Program	Date					Date	e Analyzed				
Code	Туре	Sampled	TA	PO4F	TP	NH4	NO23	TKN	CHLA_N	UncCHLa_N	PHEA	TSS
apawpnut	grab	1/10/2024	1/19/2024	1/11/2024	1/18/2024	1/16/2024	1/18/2024	1/22/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apadbnut	grab	1/10/2024	1/19/2024	1/11/2024	1/18/2024	1/16/2024	1/18/2024	1/22/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apapenut	grab	1/10/2024	1/19/2024	1/11/2024	1/18/2024	1/16/2024	1/18/2024	1/18/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apambnut	grab	1/10/2024	1/19/2024	1/11/2024	1/18/2024	1/16/2024	1/18/2024	1/18/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apaegnut	grab	1/10/2024	1/19/2024	1/11/2024	1/18/2024	1/16/2024	1/18/2024	1/18/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apaesnut	grab	1/10/2024	1/19/2024	1/11/2024	1/22/2024	1/16/2024	1/23/2024	1/22/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apaebnut	grab	1/10/2024	1/19/2024	1/11/2024	1/18/2024	1/16/2024	1/26/2024	1/18/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apanhnut	grab	1/10/2024	1/19/2024	1/11/2024	1/18/2024	1/16/2024	1/26/2024	1/26/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apacpnut	grab	1/10/2024	1/19/2024	1/11/2024	1/22/2024	1/16/2024	1/26/2024	1/22/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
aparvnut	grab	1/10/2024	1/19/2024	1/11/2024	1/18/2024	1/16/2024	1/16/2024	1/16/2024	1/17/2024	1/17/2024	1/17/2024	1/16/2024
apacpnut	grab	1/10/2024	1/19/2024	1/11/2024	1/22/2024	1/16/2024	1/18/2024	1/22/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apacpnut	grab	1/10/2024	1/19/2024	1/11/2024	1/22/2024	1/16/2024	1/26/2024	1/22/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/10/2024	1/19/2024	1/11/2024	1/24/2024	1/24/2024	1/23/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/10/2024	1/19/2024	1/11/2024	1/24/2024	1/24/2024	1/23/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/10/2024	1/19/2024	1/11/2024	1/24/2024	1/24/2024	1/23/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/10/2024	1/19/2024	1/11/2024	1/22/2024	1/24/2024	1/26/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/10/2024	1/19/2024	1/11/2024	1/22/2024	1/24/2024	1/26/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/10/2024	1/19/2024	1/11/2024	1/22/2024	1/24/2024	1/18/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/10/2024	1/19/2024	1/11/2024	1/22/2024	1/24/2024	1/18/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/11/2024	1/19/2024	1/11/2024	1/22/2024	1/24/2024	1/18/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/11/2024	1/19/2024	1/11/2024	1/22/2024	1/24/2024	1/18/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/11/2024	1/19/2024	1/11/2024	1/24/2024	1/24/2024	1/18/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apaesnut	diel	1/11/2024	1/19/2024	1/11/2024	1/24/2024	1/24/2024	1/23/2024	1/26/2024	1/18/2024	1/18/2024	1/18/2024	1/16/2024
apadbnut	grab	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/13/2024	2/9/2024	2/13/2024	2/13/2024	2/13/2024	2/13/2024	2/12/2024
apapenut	grab	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/13/2024	2/9/2024	2/13/2024	2/13/2024	2/13/2024	2/13/2024	2/12/2024
apambnut	grab	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/15/2024	2/9/2024	2/13/2024	2/13/2024	2/13/2024	2/13/2024	2/12/2024
apaegnut	grab	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/15/2024	2/15/2024	2/13/2024	2/13/2024	2/13/2024	2/13/2024	2/12/2024
apaesnut	grab	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/15/2024	2/9/2024	2/13/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaebnut	grab	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/15/2024	2/9/2024	2/13/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apanhnut	grab	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/15/2024	2/9/2024	2/13/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apacpnut	grab	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/15/2024	2/9/2024	2/15/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
aparvnut	grab	2/6/2024	2/17/2024	2/8/2024	2/26/2024	2/15/2024	2/12/2024	2/14/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/22/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/22/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/6/2024	2/17/2024	2/8/2024	2/23/2024	2/21/2024	2/16/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024

apaesnut	diel	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/16/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/16/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/28/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/6/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/16/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/7/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/16/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/7/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/22/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apaesnut	diel	2/7/2024	2/17/2024	2/8/2024	2/20/2024	2/21/2024	2/16/2024	2/22/2024	2/14/2024	2/14/2024	2/14/2024	2/12/2024
apacpnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apacpnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apacpnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apadbnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaebnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaegnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/18/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaesnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/18/2024	3/12/2024	3/19/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apambnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apanhnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apapenut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apascnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apawpnut	grab	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/12/2024	3/13/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaesnut	diel	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/19/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaesnut	diel	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/19/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaesnut	diel	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/19/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaesnut	diel	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/19/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaesnut	diel	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/19/2024	3/14/2024	3/14/2024	3/14/2024	3/12/2024
apaesnut	diel	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/19/2024	3/18/2024	3/18/2024	3/18/2024	3/12/2024
apaesnut	diel	3/7/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/19/2024	3/18/2024	3/18/2024	3/18/2024	3/12/2024
apaesnut	diel	3/8/2024	3/14/2024	3/8/2024	3/19/2024	3/20/2024	3/21/2024	3/25/2024	3/18/2024	3/18/2024	3/18/2024	3/12/2024
apaesnut	diel	3/8/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/19/2024	3/18/2024	3/18/2024	3/18/2024	3/12/2024
apaesnut	diel	3/8/2024	3/14/2024	3/8/2024	3/18/2024	3/20/2024	3/18/2024	3/21/2024	3/18/2024	3/18/2024	3/18/2024	3/12/2024
apaesnut	diel	3/8/2024	3/14/2024	3/8/2024	3/19/2024	3/20/2024	3/18/2024	3/21/2024	3/18/2024	3/18/2024	3/18/2024	3/12/2024
apacpnut	grab	4/2/2024	4/6/2024	4/3/2024	4/9/2024	4/8/2024	4/5/2024	4/11/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
apadbnut	grab	4/2/2024	4/6/2024	4/3/2024	4/8/2024	4/8/2024	4/5/2024	4/11/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
apaebnut	grab	4/2/2024	4/6/2024	4/3/2024	4/10/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
apaegnut	grab	4/2/2024	4/6/2024	4/3/2024	4/10/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
apaesnut	grab	4/2/2024	4/6/2024	4/3/2024	4/10/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
apambnut	grab	4/2/2024	4/6/2024	4/3/2024	4/10/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
apanhnut	grab	4/2/2024	4/6/2024	4/3/2024	4/9/2024	4/8/2024	4/5/2024	4/11/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
apapcnut	grab	4/2/2024	4/6/2024	4/3/2024	4/9/2024	4/8/2024	4/5/2024	4/11/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
aparvnut	grab	4/2/2024	4/6/2024	4/3/2024	4/11/2024	4/8/2024	4/8/2024	4/8/2024	4/10/2024	4/10/2024	4/10/2024	4/5/2024
apawpnut	grab	4/2/2024	4/6/2024	4/3/2024	4/8/2024	4/8/2024	4/5/2024	4/11/2024	4/8/2024	4/8/2024	4/8/2024	4/5/2024
apawpnut	grab	4/30/2024	5/10/2024	5/1/2024	5/3/2024	5/3/2024	5/3/2024	5/6/2024	5/2/2024	5/2/2024	5/2/2024	5/3/2024
apadbnut	grab	4/30/2024	5/10/2024	5/1/2024	5/3/2024	5/3/2024	5/3/2024	5/6/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apapcnut	grab	4/30/2024	5/10/2024	5/1/2024	5/3/2024	5/3/2024	5/3/2024	5/7/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024

apambnut	grab	4/30/2024	5/10/2024	5/1/2024	5/3/2024	5/3/2024	5/3/2024	5/7/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaegnut	grab	4/30/2024	5/10/2024	5/1/2024	5/8/2024	5/3/2024	5/3/2024	5/7/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	grab	4/30/2024	5/10/2024	5/1/2024	5/8/2024	5/3/2024	*	5/6/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaebnut	grab	4/30/2024	5/10/2024	5/1/2024	5/8/2024	5/3/2024	5/3/2024	5/6/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apascnut	grab	4/30/2024	5/10/2024	5/1/2024	5/8/2024	5/3/2024	5/3/2024	5/6/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apanhnut	grab	4/30/2024	5/10/2024	5/1/2024	5/8/2024	5/3/2024	5/3/2024	5/6/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apacpnut	grab	4/30/2024	5/10/2024	5/1/2024	5/8/2024	5/7/2024	5/3/2024	5/6/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
aparvnut	grab	4/30/2024	5/10/2024	5/1/2024	5/3/2024	5/7/2024	*	5/6/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	grab	4/30/2024	5/10/2024	5/1/2024	5/8/2024	5/3/2024	*	5/9/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	grab	4/30/2024	5/10/2024	5/1/2024	*	5/3/2024	*	5/9/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	4/30/2024	5/10/2024	5/1/2024	5/22/2024	5/7/2024	*	5/7/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	4/30/2024	5/10/2024	5/1/2024	*	*	*	5/9/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	4/30/2024	5/10/2024	5/1/2024	*	*	*	5/24/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	4/30/2024	5/10/2024	5/1/2024	*	*	*	5/9/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	4/30/2024	5/10/2024	5/1/2024	*	*	*	5/9/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	4/30/2024	5/10/2024	5/1/2024	*	*	*	5/9/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	4/30/2024	5/10/2024	5/1/2024	*	*	*	5/9/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	5/1/2024	5/10/2024	5/1/2024	*	*	*	5/9/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	5/1/2024	5/10/2024	5/1/2024	*	*	*	5/24/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	5/1/2024	5/10/2024	5/1/2024	*	*	*	5/24/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apaesnut	diel	5/1/2024	5/10/2024	5/1/2024	*	*	*	5/24/2024	5/6/2024	5/6/2024	5/6/2024	5/3/2024
apawpnut	grab	6/4/2024	6/8/2024	6/5/2024	6/10/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apadbnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apapcnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apambnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaegnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/10/2024	6/21/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaesnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaebnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apascnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apanhnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apacpnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/12/2024	6/12/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
aparvnut	grab	6/4/2024	6/8/2024	6/5/2024	6/11/2024	6/10/2024	6/10/2024	6/21/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaesnut	diel	6/4/2024	6/8/2024	6/5/2024	6/17/2024	6/19/2024	6/14/2024	6/21/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaesnut	diel	6/4/2024	6/8/2024	6/5/2024	6/17/2024	6/14/2024	6/18/2024	6/21/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaesnut	diel	6/4/2024	6/8/2024	6/5/2024	6/17/2024	6/19/2024	6/14/2024	6/21/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaesnut	diel	6/4/2024	6/8/2024	6/5/2024	6/17/2024	6/19/2024	6/14/2024	6/21/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaesnut	diel	6/4/2024	6/8/2024	6/5/2024	6/17/2024	6/19/2024	6/14/2024	6/21/2024	6/18/2024	6/18/2024	6/18/2024	6/10/2024
apaesnut	diel	6/4/2024	6/8/2024	6/5/2024	6/17/2024	6/19/2024	6/14/2024	6/21/2024	6/20/2024	6/20/2024	6/20/2024	6/10/2024
apaesnut	diel	6/4/2024	6/8/2024	6/5/2024	6/17/2024	6/19/2024	6/14/2024	6/21/2024	6/20/2024	6/20/2024	6/20/2024	6/10/2024
apaesnut	diel	6/5/2024	6/8/2024	6/5/2024	6/17/2024	6/19/2024	6/14/2024	6/21/2024	6/20/2024	6/20/2024	6/20/2024	6/10/2024
apaesnut	diel	6/5/2024	6/8/2024	6/5/2024	6/17/2024	6/14/2024	6/18/2024	6/21/2024	6/20/2024	6/20/2024	6/20/2024	6/10/2024
apaesnut	diel	6/5/2024	6/8/2024	6/5/2024	6/17/2024	6/14/2024	6/18/2024	6/21/2024	6/20/2024	6/20/2024	6/20/2024	6/10/2024
apawpnut	grab	6/25/2024	6/29/2024	6/26/2024	7/1/2024	7/10/2024	7/1/2024	7/8/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024

apadbnut	grab	6/25/2024	6/29/2024	6/26/2024	7/1/2024	7/10/2024	7/1/2024	7/8/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apapcnut	grab	6/25/2024	6/29/2024	6/26/2024	7/1/2024	7/10/2024	7/1/2024	7/8/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apambnut	grab	6/25/2024	7/3/2024	6/26/2024	7/1/2024	7/10/2024	7/1/2024	7/8/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaegnut	grab	6/25/2024	7/3/2024	6/26/2024	7/1/2024	7/10/2024	7/1/2024	7/15/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	grab	6/25/2024	7/3/2024	6/26/2024	7/1/2024	7/10/2024	7/10/2024	7/17/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaebnut	grab	6/25/2024	7/3/2024	6/26/2024	7/9/2024	7/10/2024	7/1/2024	7/17/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apascnut	grab	6/25/2024	7/3/2024	6/26/2024	7/9/2024	7/10/2024	7/1/2024	7/15/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apanhnut	grab	6/25/2024	7/3/2024	6/26/2024	7/9/2024	7/10/2024	7/1/2024	7/17/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apacpnut	grab	6/25/2024	7/3/2024	6/26/2024	7/9/2024	7/10/2024	7/1/2024	7/15/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
aparvnut	grab	6/25/2024	7/3/2024	6/26/2024	7/9/2024	7/10/2024	7/15/2024	7/9/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apadbnut	grab	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/10/2024	7/3/2024	7/15/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apadbnut	grab	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/10/2024	7/3/2024	7/15/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/25/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/26/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/26/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/26/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apaesnut	diel	6/26/2024	7/3/2024	6/26/2024	7/16/2024	7/11/2024	7/10/2024	7/12/2024	7/11/2024	7/11/2024	7/11/2024	7/1/2024
apawpnut	grab	8/13/2024	8/16/2024	8/14/2024	8/23/2024	8/22/2024	8/21/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apadbnut	grab	8/13/2024	8/16/2024	8/14/2024	8/23/2024	8/22/2024	8/21/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apapenut	grab	8/13/2024	8/16/2024	8/14/2024	8/23/2024	8/22/2024	8/21/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apambnut	grab	8/13/2024	8/16/2024	8/14/2024	8/23/2024	8/22/2024	8/21/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apaegnut	grab	8/13/2024	8/16/2024	8/14/2024	8/23/2024	8/22/2024	8/21/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apaesnut	grab	8/13/2024	8/16/2024	8/14/2024	8/30/2024	8/27/2024	8/19/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apaebnut	grab	8/13/2024	8/16/2024	8/14/2024	8/30/2024	8/27/2024	8/20/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apascnut	grab	8/13/2024	8/16/2024	8/14/2024	8/23/2024	8/22/2024	8/21/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apanhnut	grab	8/13/2024	8/16/2024	8/14/2024	8/23/2024	8/27/2024	8/21/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apacpnut	grab	8/13/2024	8/16/2024	8/14/2024	8/23/2024	8/27/2024	8/21/2024	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
aparvnut	grab	8/13/2024	8/16/2024	8/14/2024	8/22/2024	8/27/2024	8/19/2024	9/5/2024	8/26/2024	8/26/2024	8/26/2024	8/16/2024
apaesnut	diel	8/22/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	8/30/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/22/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	8/30/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/22/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	8/30/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/22/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	9/5/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/22/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	9/5/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/22/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	9/5/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/22/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	9/5/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/23/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	9/5/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/23/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	9/5/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024

apaesnut	diel	8/23/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	9/5/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apaesnut	diel	8/23/2024	8/29/2024	8/23/2024	9/5/2024	9/4/2024	9/5/2024	9/5/2024	9/4/2024	9/4/2024	9/4/2024	8/27/2024
apawpnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/6/2024	9/11/2024	9/13/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apapcnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/6/2024	9/11/2024	9/13/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaegnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/10/2024	9/11/2024	9/13/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/10/2024	9/11/2024	9/13/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaebnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/11/2024	9/11/2024	9/13/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apascnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/11/2024	9/11/2024	9/13/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apanhnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/11/2024	9/11/2024	9/13/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apacpnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/11/2024	9/11/2024	9/13/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
aparvnut	grab	9/3/2024	9/7/2024	9/4/2024	9/10/2024	9/12/2024	9/9/2024	9/11/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/12/2024	9/11/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	grab	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/12/2024	9/11/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/3/2024	9/7/2024	9/4/2024	9/9/2024	9/13/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/3/2024	9/7/2024	9/4/2024	9/17/2024	9/13/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/3/2024	9/7/2024	9/4/2024	9/17/2024	9/13/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/3/2024	9/7/2024	9/4/2024	9/17/2024	9/13/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/3/2024	9/7/2024	9/4/2024	9/17/2024	9/17/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/3/2024	9/7/2024	9/4/2024	9/17/2024	9/17/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/3/2024	9/7/2024	9/4/2024	9/17/2024	9/17/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/4/2024	9/7/2024	9/4/2024	9/17/2024	9/17/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/4/2024	9/7/2024	9/4/2024	9/17/2024	9/17/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/4/2024	9/7/2024	9/4/2024	9/17/2024	9/17/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apaesnut	diel	9/4/2024	9/7/2024	9/4/2024	9/10/2024	9/17/2024	9/17/2024	9/16/2024	9/11/2024	9/11/2024	9/11/2024	9/6/2024
apawpnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/11/2024	10/9/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apadbnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/11/2024	10/9/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apapcnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/11/2024	10/9/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apambnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/11/2024	10/9/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaegnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/14/2024	10/8/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaesnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/14/2024	10/15/2024	10/18/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaebnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/14/2024	10/8/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apascnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/11/2024	10/9/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apanhnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/14/2024	10/9/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apacpnut	grab	10/1/2024	10/5/2024	10/2/2024	10/9/2024	10/14/2024	10/9/2024	10/11/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
aparvnut	grab	10/1/2024	10/5/2024	10/2/2024	10/8/2024	10/14/2024	10/10/2024	10/15/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaesnut	diel	10/1/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/10/2024	10/18/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaesnut	diel	10/1/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/14/2024	10/18/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaesnut	diel	10/1/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/10/2024	10/18/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaesnut	diel	10/1/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/14/2024	10/18/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaesnut	diel	10/1/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/14/2024	10/25/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaesnut	diel	10/1/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/15/2024	10/25/2024	10/7/2024	10/7/2024	10/7/2024	10/7/2024
apaesnut	diel	10/1/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/15/2024	10/25/2024	10/8/2024	10/8/2024	10/8/2024	10/7/2024
apaesnut	diel	10/2/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/15/2024	10/25/2024	10/8/2024	10/8/2024	10/8/2024	10/7/2024

apaesnut	diel	10/2/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/15/2024	10/18/2024	10/8/2024	10/8/2024	10/8/2024	10/7/2024
apaesnut	diel	10/2/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/15/2024	10/25/2024	10/8/2024	10/8/2024	10/8/2024	10/7/2024
apaesnut	diel	10/2/2024	10/5/2024	10/2/2024	10/18/2024	10/14/2024	10/17/2024	10/18/2024	10/8/2024	10/8/2024	10/8/2024	10/7/2024
apadbnut	grab	12/3/2024	12/10/2024	12/4/2024	12/10/2024	12/10/2024	12/5/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apapenut	grab	12/3/2024	12/10/2024	12/4/2024	12/10/2024	12/10/2024	12/5/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apambnut	grab	12/3/2024	12/10/2024	12/4/2024	12/10/2024	12/10/2024	12/5/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaegnut	grab	12/3/2024	12/10/2024	12/4/2024	12/10/2024	12/10/2024	12/5/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	grab	12/3/2024	12/10/2024	12/4/2024	12/10/2024	12/10/2024	12/5/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaebnut	grab	12/3/2024	12/10/2024	12/4/2024	12/10/2024	12/10/2024	12/5/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apanhnut	grab	12/3/2024	12/10/2024	12/4/2024	12/10/2024	12/10/2024	12/5/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apacpnut	grab	12/3/2024	12/10/2024	12/4/2024	12/11/2024	12/10/2024	12/5/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
aparvnut	grab	12/3/2024	12/10/2024	12/4/2024	12/11/2024	12/13/2024	12/17/2024	12/11/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apacpnut	grab	12/3/2024	12/10/2024	12/5/2024	12/13/2024	12/10/2024	12/12/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apacpnut	grab	12/3/2024	12/10/2024	12/5/2024	12/13/2024	12/13/2024	12/12/2024	12/13/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/3/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/3/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/3/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/3/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/3/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/3/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/4/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/4/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/4/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/4/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/16/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024
apaesnut	diel	12/4/2024	12/10/2024	12/4/2024	12/13/2024	12/13/2024	12/12/2024	12/18/2024	12/12/2024	12/12/2024	12/12/2024	12/6/2024

^{*}sample held longer than allowed by NERRS protocols

a) Information about flagged data and additional notes

January 2024:

- Apascnut was not sampled.
- Apadbnut sampled at 1.0 meter, reject all data as spikes are likely due to the pump sucking up stuff from the bottom

February 2024:

- Suspect ISCO filled bottles off by 1, bottles 241 in 240 and so forth.
- Apawpnut and apascnut were not sampled.

March 2024:

- Aparvnut was not sampled due to boat motor breaking.

April 2024:

- Diel samples and apascnut were not sampled due to weather and rescheduling conflicts.

May 2024:

- Lab was hit by tornados and lost power. Some samples were not able to be analyzed before exceeding NERR preservation and hold limits.

June 2024:

- Final Diel sample was not collected due to programming mistake.

July 2024:

August 2024:

September 2024:

- Apambnut and apadbnut were not sampled due to hazardous marine conditions.

October 2024:

- Hurricane Helene made landfall at Big Bend as a Category 4 on 09/26/2024.
- East Bay very fresh, high tannins

November 2024:

- Samples were not collected due to continued unsafe marine conditions.

December 2024:

- Apascnut was not sampled, couldn't traverse channel due to the low tide and out of position channel navigation markers.
- Apawpnut was not sampled due to unsafe marine conditions.
- Apadbnut and apacpnut were sampled at 1.0 meter instead of 1.5 meters due to the low tide.