Chesapeake Bay Maryland (CBM) NERR Meteorological Metadata

January 2015 – December 2015 Latest Update: February 13, 2017

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons

Jennifer Raulin, Manager Chesapeake Bay National Estuarine Research Reserve Maryland Maryland Department of Natural Resources Tawes State Office Building, E-2 580 Taylor Avenue, E-2 Annapolis, MD 21401 Phone: (410) 260-8745

Fax: (410) 260-8739

e-mail: Jennifer.raulin@maryland.gov

Jenny Allen, Research Coordinator Chesapeake Bay National Estuarine Research Reserve Maryland Maryland Department of Natural Resources Tawes State Office Building, E-2 580 Taylor Avenue, E-2 Annapolis, MD 21401 Phone: (410) 260-8737

Fax: (410) 260-8739

e-mail: jenny.allen@maryland.gov

Lauren Cunningham, Research Technician and Data QAQC Maryland Department of Natural Resources 1919 Lincoln Drive Annapolis, Maryland 21401

Phone: (410) 263-3369 Fax: (410) 263-2468

email: lauren.cunningham@maryland.gov

John Zimmerelli, Research Technician Maryland Department of Natural Resources 1919 Lincoln Drive Annapolis, Maryland 21401 Phone: (410) 263-3369

Fax: (410) 263-2468

email: john.zimmerelli.@maryland.gov

2) Entry verification

The meteorological information is sampled every 5 seconds from each instrument on the weather station and stored on a Campbell Scientific CR1000 data logger. Data are uploaded from the CR1000 data logger to a Personal Computer (IBM compatible). Files are exported from or LoggerNet in a comma-delimited format and uploaded to the CDMO where they undergo automated primary QAQC and become part of the CDMO's online provisional database. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the Reserve where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, append files, and export the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. For more information on QAQC flags and QAQC codes, see Sections 11 and 12. Processing, data verification, and data upload to the CDMO server was performed by Lauren Cunningham.

3) Research objectives

The principal objectives are to record meteorological information for the Chesapeake Bay National Estuarine Research Reserve in Maryland in support of the National Estuarine Research Reserve's (NERR) System Wide Monitoring Program (SWMP). This information is available for the following: 1) to track and record atmospheric and meteorological conditions useful to help understand and explain additional data collected concurrently, 2) to create a database capable of detecting long-term changes in weather patterns, and 3) to record and identify the impact of storms, hurricanes, heavy rain and other episodic weather events capable of influencing other environmental conditions such as water quality (as monitored by the SWMP effort) and to collect ancillary data in support of other research efforts

4) Research methods

Campbell Scientific data telemetry equipment was installed at the Chesapeake Bay Maryland NERR Jug Bay station August 2000 and transmits data to the NOAA GOES satellite, NESDIS ID #3B0071EA. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at http://cdmo.baruch.sc.edu.

The Campbell Scientific weather station samples every 5 seconds continuously throughout the year. Data are used by the CR1000 to produce 15 minutes averages, maximums, minimums, and totals. Data are manually downloaded on site, or is telemetered via cellular technology to a desktop PC at the MD DNR Annapolis Field Office. Typically, data are transferred or uploaded once monthly throughout the year. The reports, graphs and queries of meteorological data are reviewed and any errors or anomalous data are further investigated and the data are corrected, rejected (if necessary), or commented on and left unchanged.

The 15 minute Data are collected in the following formats for the **CR1000**: Averages from 5-second data:

Air Temperature (°C), Relative Humidity (%), Barometric Pressure (mb), Wind Speed (m/s), Wind Direction (degrees), Battery Voltage (volts)

Maximum and Minimum Air Temperature (°C) and their times from 5-second data (these data are available from the Reserve)

Maximum Wind Speed (m/s) and time from 5-second data

Wind Direction Standard Deviation (degrees)

Totals:

Precipitation (mm), PAR (millimoles/m²), and Cumulative Precipitation (mm)

Recommended calibration frequency for the MET station sensors:

- Temperature/Humidity- yearly recalibration
- Rain Gauge- yearly recalibration
- Wind Speed/Direction- yearly or every 2 years (depending on the sensor)
- Barometric Pressure- every 2 years recalibration
- PAR- every 2 years recalibration
- CR1000-every 5 years (required beginning 2014, one year initial grace period)

A minimum of monthly maintenance is conducted on the sensors, probes, and weather station in accordance with NERR guidelines. At this time, sensors on the weather station are inspected for damage, debris, and or/fouling and cleaned as needed. Monthly maintenance log sheets are also completed and sensors are checked with a handheld Kestrel 4000 or a local National Weather Station to ensure comparative readings. Additional checks are often done bi-weekly specifically to check the rain gauge for fouling. The rain gauge frequently tends to collect debris and is, therefore, checked as often as possible, with suggested checks prior to onset of storm events. Simultaneous rain data are also recorded by the Jug Bay Wetlands Sanctuary daily, providing supplemental rain data. Old sensors are sent back to Campbell Scientific for calibration and are rotated every year or two years to maintain current calibration requirements.

5) Site location and character

The Chesapeake Bay National Estuarine Research Reserve in Maryland consists of three components; Otter Point Creek on the Bush River along the upper western shore of the Chesapeake Bay, Jug Bay along the Patuxent River in the middle Bay, and Monie Bay on the lower eastern shore of the Chesapeake Bay. The weather station is located at the Jug Bay Component of the Reserve, specifically at the Jug Bay Wetlands Sanctuary. The station is situated on the north end of the Jug Bay marsh, along a tidal creek that feeds the Patuxent River. The weather station is situated at 38° 46′ 50.76″ N and 76° 42′29.52″ W. The station is housed in a small bird blind situated at the end of a boardwalk in the Jug Bay marsh. The boardwalk extends about 50m from an elevated old railroad track out into the marsh. The CR1000 and BP sensor are in a weatherproof box situated on the inside of the building, while the other probes are fixed to the roof or side of the building so as not to be impacted by the structure. The probes are approximately 5m above mean water and are not shaded. The wind speed and direction sensor and PAR sensors are mounted directly to the roof of the blind. The temperature/relative humidity sensor is mounted directly below those sensors on the side of the building. The tipping rain gauge is mounted on the boardwalk railing, a few meters from the other sensors.

Sensor heights from the marsh surface (meters):

Temperature/humidity: 3.9

PAR: 5.2

Wind speed/direction: 5.4

Rain bucket: 3.9

BP: 3.4

Wind speed may be slightly altered at the site due to proximity of the historic railroad bridge that splits the marsh. The old railroad bridge is on an elevated berm that sits about 2-2.5m above mean water. The berm runs east to west and the boardwalk that houses the weather station runs perpendicular to the berm in the north/south direction. From 1995-2002, the weather station was also the site of a YSI datalogger that recorded water quality at the site. Due to problems with the shallow nature of the site, the water quality component was moved in 2003, approximately 500m westward, from the tidal creek to the mainstem of the Patuxent River.

6) Data collection period

Meteorological data have been collected at the Chesapeake Bay Maryland NERR Jug Bay site since August 2000. The current weather station has been operational since this time. Weather data at the JUG Bay site for 2015 was collected from 01/01/2015 00:00:00 to 12/31/2015 23:45:00.

```
Start and end date and times of 2015 raw data files submitted to the CDMO: CBMJBMET010115.csv: 01/01/2015 00:00:00 – 01/28/2015 08:30:00 CBMJBMET020115.csv: 02/11/2015 10:30:00 – 02/28/2015 23:45:00 CBMJBMET030115.csv: 03/01/2015 00:00:00 – 03/31/2015 23:45:00 CBMJBMET040115.csv: 04/01/2015 00:00:00 – 05/21/2015 09:45:00 CBMJBMET052115.csv: 05/21/2015 10:00:00 – 06/12/2015 09:45:00 CBMJBMET060115.csv: 06/01/2015 00:00:00 – 06/30/2015 23:45:00 CBMJBMET070115.csv: 07/01/2015 00:00:00 – 06/30/2015 23:45:00 CBMJBMET080115.csv: 08/01/2015 00:00:00 – 08/31/2015 23:45:00 CBMJBMET090115.csv: 09/01/2015 00:00:00 – 09/30/2015 23:45:00 CBMJBMET100115.csv: 10/01/2015 00:00:00 – 09/30/2015 23:45:00 CBMJBMET110115.csv: 11/01/2015 00:00:00 – 11/30/2015 23:45:00 CBMJBMET110115.csv: 12/01/2015 00:00:00 – 11/30/2015 23:45:00 CBMJBMET110115.csv: 12/01/2015 00:00:00 – 12/31/2015 23:45:00 CBMJBMET110115.csv: 12/01/2015 00:00:00 – 12/31/2015 23:45:00
```

7) Distribution

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and process the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: http://www.nerrsdata.org/; accessed 12 October 2012.

NERR meteorological data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page www.nerrsdata.org. Data are available in comma delimited format.

8) Associated researchers and projects

Meteorological data are most commonly used in support of the System Wide Monitoring Program (SWMP) and to help explain the relationships between water quality, nutrients, and meteorological conditions. Three of the four Chesapeake Bay Maryland SWMP water quality sites are located at the Jug Bay component of the Reserve and, therefore, the collection of meteorological data provides additional information helpful for analyzing and detecting trends in water quality and nutrient data that are collected by the Reserve.

Additional research and data that is available at the Jug Bay component of the Reserve is sediment erosion data and water quality data collected by Jug Bay Wetlands Sanctuary staff. Various sediment erosion tables (SET) are installed and monitored at the site annually to track changes in sedimentation levels. These can be obtained through the Research Coordinator.

II. Physical Structure Descriptors

9) Sensor specifications

Parameter: Temperature

Units: Celsius

Sensor type: Platinum resistance temperature detector (PRT) Model #: HMP45C Temperature and Relative Humidity Probe

Operating Temperature: -40°C to +60°C

Range: -40°C to +60°C Accuracy: ± 0.2 °C @ 20°C Serial Number: Y1120038 Date of Calibration: 04/04/2013

Dates of Sensor Use: 06/25/2014 – current as of 12/31/2015

Parameter: Relative Humidity

Units: Percent

Sensor type: Vaisala HUMICAP© 180 capacitive relative humidity sensor

Model #: HMP45C Temperature and Relative Humidity Probe

Range: 0-100% non-condensing

Accuracy at 20°C: +/- 2% RH (0-90%) and +/- 3% (90-100%) Temperature dependence of RH measurement: +/- 0.05% RH/°C

Serial Number: Y1120038 Date of Calibration: 04/04/2013

Dates of Sensor Use: 06/25/2014 – current as of 12/31/2015

Parameter: Barometric Pressure

Units: millibars (mb)

Sensor type: Vaisala Barocap © silicon capacitive pressure sensor

Model #: CS-105

Operating Range: Pressure: 600 to 1060 mb; Temperature: -40°C to +60°C;

Humidity: non-condensing

Accuracy: ± 0.5 mb @ 20°C; +/- 2 mb @ 0°C to 40°C; +/- 4 mb @ -20°C to 45°C; +/- 6 mb @

-40°C to 60°C

Stability: ± 0.1 mb per year Serial Number: Y0820021 Date of Calibration: 04/16/2013

Dates of Sensor Use: 06/25/2014 - current as of 12/31/2015

Parameter: Wind speed Units: meter per second (m/s)

Sensor type: 12 cm diameter cup wheel assembly, three 40 mm diameter hemispherical cups

Model #: R.M. Young 03101-5 Wind Monitor

Range: 0-50 m/s (112 mph); gust survival 60 m/s (134 mph)

Accuracy: +/- 0.5 m/s Serial Number: N/A

Date of Calibration: 04/08/2013

Dates of Sensor Use: 06/25/2014 - 04/23/2015

Parameter: Wind speed Units: meter per second (m/s)

Sensor type: 12 cm diameter cup wheel assembly, three 40 mm diameter hemispherical cups

Model #: R.M. Young 03101-5 Wind Monitor

Range: 0-50 m/s (112 mph); gust survival 60 m/s (134 mph)

Accuracy: +/- 0.5 m/s Serial Number: 21908M3 Date of Calibration: 04/15/2015

Dates of Sensor Use: 04/23/2015 – current as of 12/31/2015

Parameter: Wind direction

Units: degrees

Sensor type: balanced vane, 16 cm turning radius Model #: R.M. Young 03301-5 Wind Monitor Range: 360° mechanical, 355° electrical (5° open)

Accuracy: +/- 5 degrees Serial Number: N/A

Date of Calibration: 04/08/2013

Dates of Sensor Use: 06/25/2014 - 04/23/2015

Parameter: Wind direction

Units: degrees

Sensor type: balanced vane, 16 cm turning radius Model #: R.M. Young 03301-5 Wind Monitor Range: 360° mechanical, 355° electrical (5° open)

Accuracy: +/- 5 degrees Serial Number: 21908M3 Date of Calibration: 04/15/2015

Dates of Sensor Use: 04/23/2015 – current as of 12/31/2015

Parameter: Photosynthetically Active Radiation (PAR)

LI-COR Quantum Sensor Units: mmoles m-2 (total flux)

Sensor type: High stability silicon photovoltaic detector (blue enhanced)

Model #: LI190SB

Light spectrum waveband: 400 to 700 nm

Temperature dependence: 0.15% per °C maximum

Stability: <±2% change over 1 yr

Operating Temperature: -40°C to 65°C; Humidity: 0 to 100%

Sensitivity: typically 5 µA per 1000 µmoles s-1 m-2

Multiplier: 1.51

Serial Number: Q31552

Date of Calibration: 04/05/2013

Dates of Sensor Use: 06/25/2014 – current as of 12/31/2015

Parameter: Precipitation (specify if heated rain gauge)

Units: millimeters (mm)

Sensor type: Tipping Bucket Rain Gauge

Model #: TE525

Rainfall per tip: 0.01 inch

Operating range: Temperature: 0° to 50°C; Humidity: 0 to 100%

Accuracy: +/- 1.0% up to 1 in./hr; +0, -3% from 1 to 2 in./hr; +0, -5% from 2 to 3 in./hr

Serial Number: N/A

Date of Calibration: 07/23/2014

Dates of Sensor Use: 07/23/2014 – current as of 12/31/2015

The CR1000 has 2 MB of Flash EEPROM that is used to store the Operating System. Another 128 K Flash is used to store configuration settings. A minimum of 2 MB SRAM is (4 MB optional upgrade) available for program storage (16K), operating system use, and data storage. Additional storage is available by using a compact flash card in the optional CFM100 Compact Flash Module.

CR1000 Serial Number: 5080

Date CR1000 Installed: 10/31/2006 Date CR1000 Calibrated: unknown

Date CR1000 Installed: 02/11/2015 - current as of 12/31/2015

Date CR1000 Calibrated: 02/06/2015

CR1000 Firmware Version (s): Std. 22 Installed 11/04/2007 CR1000 Program Version(s): CBMJBMET_V6.0_111511.CR1 CBMJBMET_V6.0_062714.CR1

10) Coded variable definitions

Sampling station: Sampling site code: Station code: JΒ cbmjbmet

11) QAQC flag definitions

Jug Bay

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is above or below sensor range, or missing. All remaining data are then flagged 0, as passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP supported parameter
- 0 Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag

- 3 Open reserved for later flag
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the CR1000, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F_Record column.

General Errors Instrument Malfunction **GIM** Instrument Recording Error, Recovered Telemetry Data **GIT GMC** No Instrument Deployed due to Maintenance/Calibration Instrument Maintenance **GMT** GPD Power Down **GPF** Power Failure / Low Battery GPR Program Reload Data Rejected Due to QA/QC Checks **GQR GSM** See Metadata Sensor Errors SDG Suspect due to sensor diagnostics SIC Incorrect Calibration Constant, Multiplier or Offset SIW **Incorrect Wiring** Sensor Maintenance **SMT SNV** Negative Value SOC Out of Calibration Data rejected due to QAQC checks **SQR** SSD Sensor Drift Not a Number / Unknown Value SSN Sensor Malfunction SSM SSR Sensor Removed Comments **CAF** Acceptable Calibration/Accuracy Error of Sensor Cause Unknown CCU **CDF** Data Appear to Fit Conditions CML Snow melt from previous snowfall event CRE* Significant Rain Event See Metadata CSM* CVT*Possible Vandalism/Tampering Significant weather event CWE*

13) Other remarks/notes

Data are missing due to equipment or associated specific sensors not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling

station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

Small negative PAR values are within range of the sensor and are due to normal errors in the sensor and the CR1000 Datalogger. The Maximum signal noise error for the Licor sensor is +/-2.214 mmoles/m2 over a 15 minute interval.

Please note that the 3101-5 Wind Monitor has an offset of 0.2 and does not record values of 0.

Relative Humidity data greater than 100 are within range of the sensor accuracy of $\pm -3\%$.

Data recorded for all parameters (with the exception of cumulative precipitation) at the midnight timestamp (00:00) are the 15 minute averages and totals for the 23:45-23:59 time period of the previous day. Cumulative precipitation data at the midnight timestamp (00:00) are the sum of raw (unrounded) precipitation data from 00:00 to 23:59 of the previous day. Summing each individual 15-minute total precipitation value from the same period will result in small differences from cumulative precipitation due to rounding. It is especially important to note how data at the midnight timestamp are recorded when using January 1st and December 31st data. Note: Cumulative precipitation is no longer available via export from the CDMO. Please contact the Reserve or the CDMO for more information or to obtain these data.

Total precipitation data for the following dates and times were corrected in the data. The associated cumulative precipitation data were also corrected for the remainder of the day but are not listed. Field personnel were calibrating the rain gauge at these times.

The CR1000 was removed for calibration on 01/28/2015 at 08:45 and reinstalled on 02/11/2015 at 10:15. All data on 02/11/2015 at 10:30 was rejected as it was not a full 15 minutes of data.

All data from 02/11/2015 at 12:15 until 14:00 is missing for unknown reasons. The CR1000 did not collect any values during these times. All data from 02/11/2015 at 14:15 is rejected as it is unsure whether it is a full 15 minutes of data.

During the monthly routine check of the weather station on 04/02/2015 it was discovered that the anemometer of the wind sensor had snapped from its base and was lying on the marsh bottom, still connected to the CR1000. Wind speed readings drop and flat-line at 0.2m/s on 03/29/2015 at 20:00. A newly calibrated wind sensor (both speed and direction) was deployed on 04/23/2015 at 08:30. All wind speed and maximum wind speed data from 03/29/2015 at 20:00 through 04/23/2015 at 08:45 are rejected. Wind direction and standard deviation of wind direction at rejected for 04/23/2015 at 08:45 as a result of the sensor swap. In addition, although they had yet to flat line, wind speed and maximum wind speed values from 03/29/2015 at 19:45 are rejected as it is unsure whether it is a full 15 minutes of data.

Significant Weather Events of 2015 (record marked in data as {CWE} in the F_Record):

- June 2015 was the second wettest June on record for the District of Columbia and the wettest June ever recorded for Baltimore. Daily June rainfall records were set on June, 1, 2 20, and 27. Aside from the record rainfall days, there were also several severe storms with winds gusts causing

damage around the area. June 17-18 brought a hailstorm, the June 20 rainfall was accompanied by severe weather and wind damage, large hail and heavy rain occurred on June 23, large rainfall was recorded on June 25, tornadoes were recorded in the area on June 27, and widespread damage occurred from a severe storm the night of June 30 into July 1.

- Hurricane Joaquin arrived to the area on 9/30/15, bringing with it heavy rainfall and some strong winds. High precipitation totals cumulative precipitation values were observed from 9/30/15 until 10/3/15, with the majority of the rainfall occurring on 10/1/15 through 10/2/15.
- Significant snowstorm on 2/21/15 -2/22/15.
- Late in the winter snowstorms occurred on 3/4/15 3/5/15 and 3/20/15.

Ancillary MET Data Source:

http://www.wunderground.com (Either Queenswood or Rolling Acres stations)