Hudson River (HUD) NERR Nutrient Metadata

January – December 2011 Latest Update: May 15, 2012

I. Data Set and Research Descriptors

1. Principal investigator(s) and contact persons:

a) Reserve Contact:

Sarah H. Fernald, Research Coordinator Email: shfernal@gw.dec.state.ny.us Hudson River NERR Norrie Point Environmental Center PO Box 315

256 Norrie Point Way Staatsburg, NY 12580 Phone: 845-889-4745 x111

Fax: 845-889-4749

Christopher G. Mitchell, Research Assistant

Email: cgmitche@gw.dec.state.ny.us

Hudson River NERR

Norrie Point Environmental Center

PO Box 315

256 Norrie Point Way Staatsburg, NY 12580 Phone: 845-889-4745 x119

Fax: 845-889-4749

b) Laboratory Contact:

Denise A. Schmidt Manager of Analytical Lab Cary Institute of Ecosystem Studies (CIES) Millbrook, NY 12545-0129

Phone: 845-677-5359 Fax: 845-677-6455

c) Other Contacts None

2. Research objectives:

Monthly Grab Sampling

The objective of this study is to monitor nutrient concentrations at the Tivoli Bays component of the Hudson River National Estuarine Research Reserve. Grab samples are taken from two freshwater tidal wetlands, Tivoli North Bay and Tivoli South Bay, and their primary upland tributaries, Stony Creek and Saw Kill Creek respectively. YSI datasondes are deployed at all grab sampling sites and meteorological data are collected continuously, thus relationships can be established between nutrient levels, the aquatic environment and

meteorological conditions. The tributaries are sampled above the area of tidal influence, allowing for determination of nutrient inputs to the Tivoli Bays via stream flow. This is important because it has previously been determined that urban and residential land use practices are markedly influencing the water chemistry of the tributaries, especially Saw Kill Creek. Since residential coverage continues to increase, we hope that the intensive monitoring of the surface waters in this watershed will identify trends caused by this rapid development. Tivoli North and South Bays are sampled on an ebb tide, which accounts for nutrient inputs to the wetlands via stream flow and tidal exchange, and includes the influence of intertidal areas on nutrient levels. In addition, ebb tide sampling allows for determination of nutrient inputs to the Hudson River Estuary via the Tivoli Bays.

b) Diel Sampling

Monthly diel sampling is conducted at Tivoli South Bay. Diel sampling highlights the relative importance of tidal forcing on nutrient levels within Tivoli South Bay through the inclusion of two complete tidal cycles (a lunar day). Sampling on a flood tide allows for isolation of nutrient inputs via tidal exchange. As with grab sampling, diel sampling on an ebb tide accounts for nutrient inputs via tidal exchange and stream flow and includes the influence of intertidal areas on nutrient levels. The combination of grab and diel sampling data will provide a better understanding of the relative importance of each water source in terms of nutrient delivery to Tivoli South Bay. In addition, these data will help us develop a better understanding of the effects of the intertidal area on nutrient dynamics.

3. Research methods:

a) Monthly Grab Sampling

Monthly grab samples are collected near the four YSI data logger locations within the Tivoli Bays component of the Hudson River National Estuarine Research Reserve. These sites include Tivoli South Bay, Tivoli North Bay, Saw Kill Creek, and Stony Creek. Monthly sampling at the two bays and the two creeks is conducted on the same day, during an ebb tide within three hours of slack low-water. Efforts are made to avoid precipitation events within 48 hours of sampling. Two replicate samples are collected sequentially at each site using 1 L amber Nalgene bottles. Prior to sample collection, bottles are acid washed with 10% HCL and rinsed with distilled-deionized water. At each site, bottles are rinsed three times with ambient water just before sample collection. All sampling sites are highly mixed and samples are collected at only one depth, approximately 15 cm below the surface. At the time of sample collection, a YSI Model 85 meter is used to measure temperature, salinity, specific conductivity and dissolved oxygen (% and mg/L), and the values are recorded. Grab samples are placed on ice and returned to the laboratory. Within 24 hours, pH and alkalinity are measured and samples are filtered for seston (TSS) and chlorophyll A (CHLA). The filtrate is collected and transferred to 125 ml Nalgene bottles that have been acid washed, rinsed with distilled-deionized water, and rinsed three times with the filtrate. Filtered samples are stored at 4°C until nutrient analysis and 1 ml of 1 N H2SO4 is added to samples that will be analyzed for ammonium. Filters for CHLA analysis are placed in borosilicate vials and stored in a freezer.

b) Diel Sampling

Monthly diel sampling occurs at Tivoli South Bay near the YSI datasonde location. An ISCO 6712 Portable Sampler equipped with a 25 ft siphoning tube is used for sample collection. The siphoning tube is deployed approximately one meter from the datasonde and water is collected 20 cm off the bottom, approximate sampling depths are 0.5 meters at low tide and 2.5 meters at high tide. Two sequential samples were collected once every 2 hours for 22 hours until November 2002, when collection of the two sequential samples changed to once every 2.5 hours for 27.5 hours. The first sample is always collected at slack low tide. Samples are collected in 1 liter clear Nalgene bottles that are acid washed with 10% HCL and rinsed with distilled-deionized water prior to deployment of the ISCO. The second sample bottle in each sequence receives 2 ml of 10 N

H2SO4 prior to deployment in order to preserve the sample for ammonium analysis. The inside of the ISCO is packed with ice to keep the samples cool until the instrument is retrieved. Samples are processed on the day of retrieval. Acidified samples, the second in each collection sequence, are filtered and the filtrate is collected and transferred to 125 ml Nalgene bottles that have been acid washed and rinsed as described previously. Non-acidified samples, the first in each collection sequence, are filtered for seston and CHLA. The filtrate is collected and transferred to 125 ml Nalgene bottles that have been acid washed and rinsed as described previously. All filtered water samples are stored at 4°C until nutrient analysis is conducted. Filters used for CHLA analysis are placed in borosilicate vials and stored in a freezer.

4. Site location and character:

The Hudson River National Estuarine Research Reserve (HUDNERR) is a multi-component site totaling approximately 5,000 acres. Each component of the reserve is referenced by River Mile (RM) of the Hudson River in New York State proceeding north from the southern tip of Manhattan (RM 0). The reserve includes the following four component sites: Piermont Marsh, Rockland County (RM 24)(41°02'30"N 73°54'15"W), Iona Island, Rockland County (RM 45)(41°18'15"N 73°58'45"W), Tivoli Bays, Dutchess County (RM 98)(42°02'15"N 73°55'10"W), and Stockport Flats, Columbia County (RM 124)(42°02'30"N 73°46'00"W). The four component sites include open water, tidal wetland, and adjacent upland buffer habitats and are representative of the diverse plant and animal communities that occupy the salinity gradient within the Hudson River Estuary. Development within the watersheds of the four component sites ranges from predominantly urban/suburban to forested/agricultural.

The highlighted component for this study is the Tivoli Bays in Annandale, NY. This component includes four monitored sites: Tivoli South Bay, Tivoli North Bay, Saw Kill Creek, and Stony Creek. All four monitored sites are freshwater (0.0 ppt salinity).

Tivoli South Bay (latitude 42° 01' 37.336" N, longitude 73° 55' 33.445" W) is a tidal freshwater wetland with intertidal mudflats exposed at low tide. During the growing season (June – September), the subtidal area of Tivoli South Bay is dominated by the invasive floating macrophyte *Trapa natans*. Tivoli South Bay has a tidal range of 1.19 meters and a soft, silt/clay bottom type. The depth at the sampling location ranges from 0.5 to 2.5 meters. The non-tidal freshwater input to Tivoli South Bay includes that of a large upland tributary and a few small perennial streams.

Tivoli North Bay (latitude 42° 02' 11.56464" N, longitude 73° 55' 31.16645" W) is a freshwater tidal marsh with emergent marsh vegetation dominated by the cattail *Typha angustifolia*. Tivoli North Bay has a tidal range of 1.19 meters, a soft, silt/clay bottom type, and a depth range from 0.5 to 3.0 meters at the sampling location. The non-tidal freshwater input to Tivoli North Bay includes that of a large upland tributary and a few small perennial streams.

Saw Kill Creek (latitude 42° 01' 01.543" N, longitude 73° 54' 53.589" W) is the main tributary flowing into Tivoli South Bay. The Saw Kill Creek watershed is 26.6 square miles and land use within the watershed includes forested (51.1%), agricultural (25.8%), and urban (16.5%) areas. Characteristics of Saw Kill Creek at the sampling location include a rocky bottom type, a depth range of 0.5 to 2.0 meters, and discharge that can range from 2x10-5 to 1.2 m³/sec.

Stony Creek (latitude 42° 02' 45.556" N, longitude 73° 54' 40.237" W) is the main tributary flowing into Tivoli North Bay. The Stony Creek watershed is approximately 23 square miles and is dominated by agricultural land use. Characteristics of Stony Creek at the sampling location include a solid rock bottom and a depth range of 0.5 to 1.5 meters. Stony Creek discharge is currently being determined. Both Stony Creek and Saw Kill Creek are non-tidal and freshwater input to the tributaries consists of smaller creeks in the watershed.

The entire tidal Hudson River south of the Troy Dam is affected by polychlorinated biphenyls (PCBs), and Tivoli North and South Bays have low sedimentary concentrations of PCBs. Nutrient inputs to the Tivoli Bays via the non-tidal tributaries are the main concern in terms of pollutants. High concentrations of nitrate and phosphate have previously been documented in both Saw Kill Creek and Stony Creek. Saw Kill Creek appears to be strongly influenced by residential land use practices. This highlights the importance of continued monitoring and identification of non-point sources of pollution at these sites.

5. Coded variable definitions:

Site name codes:

SK=Saw Kill Creek, SC=Stony Creek, TN=Tivoli North Bay, TS=Tivoli South Bay

Station codes:

hudsknut = Hudson River Reserve nutrient data for Saw Kill Creek

hudscnut = Hudson River Reserve nutrient data for Stony Creek

hudtnnut = Hudson River Reserve nutrient data for Tivoli North Bay

hudtsnut = Hudson River Reserve nutrient data for Tivoli South Bay

Monitoring program codes:

1=Monthly grab sampling

2=Diel sampling

6. Data collection period:

Monthly grab samples have been collected at the four monitored sites of the Tivoli Bays since 06/17/1991. Diel sampling at Tivoli South Bay began in June 2002. The exact dates and times for the 2010 Nutrient Data collection period are listed below. Data collection is hampered during the winter months (December-March) because snow and ice often prohibit safe access to the sites.

a) Grab Sampling

Site	Date	Rep 1 Time	Date	Rep 2 Time
SC	No samples	taken January	- March due	to ice
SC	04/20/11	10:23	04/20/11	10:25
SC	05/10/11	14:00	05/10/11	14:02
SC	06/29/11	13:30	06/29/11	13:32
SC	07/21/11	09:50	07/21/11	09:52
SC	09/01/11	12:25	09/01/11	12:27
SC	09/14/11	10:00	09/14/11	10:02
SC	10/13/11	09:00	10/13/11	09:02
SC	11/15/11	10:25	11/15/11	10:27
SC	12/14/11	11:00	12/14/11	11:02
SK	No samples	taken January	- March due	to ice
SK	$04/20/\bar{1}1$	10:40	04/20/11	10:42
SK	05/10/11	14:20	05/10/11	14:22
SK	06/29/11	13:18	06/29/11	13:20
SK	07/21/11	10:10	07/21/11	10:12
SK	09/01/11	09:30	09/01/11	09:32
SK	09/14/11	10:24	09/14/11	10:26
SK	10/13/11	08:50	10/13/11	08:52
SK	11/15/11	10:42	11/15/11	10:44
SK	12/14/11	10:38	12/14/11	10:40
TN	No samples	taken January	- March due	to ice
TN	04/20/11	09:27	04/20/11	09:27

TN	05/10/11	13:22	05/10/11	13:22
TN	06/29/11	14:18	06/29/11	14:20
TN	07/21/11	09:45	07/21/11	09:47
TN	09/01/11	12:00	09/01/11	12:02
TN	09/14/11	09:00	09/14/11	09:02
TN	10/13/11	08:05	10/13/11	08:07
TN	11/15/11	09:44	11/15/11	09:46
TN	12/14/11	09:49	12/14/11	09:51
TS	No samples	s taken Jan	uary – March due	to ice
TS	04/20/11	09:41	04/20/11	09:43
TS	05/10/11	13:03	05/10/11	13:05
TS	06/29/11	14:03	06/29/11	14:05
TS	07/21/11	09:30	07/21/11	09:32
TS	09/01/11	11:00	09/01/11	11:02
TS	09/14/11	09:20	09/14/11	09:22
TS	10/13/11	08:19	10/13/11	08:21
TS	11/15/11	09:55	11/15/11	09:57
TS	12/14/11	09:37	12/14/11	09:39

b) Diel Sampling

Site	Start Date	Start Time	End Date	End Time
TS	No January	diel sample tak	ken due to ice	
TS	No Februar	y diel sample ta	aken due to ic	e
TS	No March o	liel sample take	en due to ice	
TS	04/19/11	21:30	04/21/10	01:00
TS	05/10/11	12:30	05/11/11	04:00
TS	06/08/11	00:00	06/09/11	03:30
TS	07/12/11	17:00	07/13/11	20:30
TS	08/08/11	04:00	08/10/11	07:30
TS	09/13/11	20:30	09/15/11	00:00
TS	10/11/11	19:00	10/12/11	23:30
TS	11/14/11	22:00	11/16/11	01:30
TS	12/07/11	05:00	12/08/11	08:30

7. Associated researchers and projects:

The HUDNERR water quality monitoring program examines the physical and chemical constituents of tributary and tidal waters entering and leaving HUDNERR marshes. Field measurements include dissolved oxygen, alkalinity, pH, temperature, salinity, and conductivity. Laboratory measurements include concentrations of suspended solids, nitrate, phosphate, sulfate, and chloride. Meteorological data are collected continuously at the Tivoli Bays component site, including air temperature, barometric pressure, precipitation, wind speed and direction, relative humidity and photosynthetically active radiation. These data will help us to better understand the relationships between the atmospheric and aquatic environments at this component site.

Associated researchers working at Tivoli Bays include scientists from the Cary Institute of Ecosystem Studies, Millbrook, NY; Yale School of Forestry and Environmental Studies, New Haven, CT; and Rensselaer Polytechnic Institute, Troy, NY.

8. Distribution:

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR nutrient data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in text tab-delimited format.

II. Physical Structure Descriptors

9. Entry verification:

Nutrient data are entered into a Microsoft Excel worksheet and processed using the NutrientQAQC Excel macro. The NutrientQAQC macro sets up the data worksheet, metadata worksheets, and MDL worksheet; adds chosen parameters and facilitates data entry; allows the user to set the number of significant figures to be reported for each parameter and rounds using banker's rounding rules; allows the user to input MDL values and then automatically flags/codes measured values below MDL and inserts the MDL; calculates parameters chosen by the user and automatically flags/codes for component values below MDL, negative calculated values, and missing data; allows the user to apply QAQC flags and codes to the data; produces summary statistics; graphs selected parameters for review; and exports the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database.

Following sample analysis (ammonium, nitrate, orthophosphate, chloride, sulphate), data files are transferred directly from analytical instruments to desktop computers. Reports are generated as Excel spreadsheets and verified by the head of the CIES analytical laboratory. Data are examined for completeness, consistency and outliers. Suspect data are flagged, data are reviewed at CIES, and if possible, samples are analyzed a second time. The Excel spreadsheets are then sent to Hudson River Research Reserve staff.

For chlorophyll a and phaeophytin data, raw fluorescence data are entered by hand into spreadsheets that have been set up to perform necessary calculations. Entered data are checked twice for errors and calculated values are examined for completeness, consistency and outliers.

Laboratory data are then assigned an ID and imported into an Access database. Field data are entered directly into Access with a corresponding sample ID. The field and laboratory data for the four sites described here are then queried out of Access, imported into Excel, reformatted and pre-processed. In addition, laboratory values are reported as PO4, NO3, and NH4 in mg/L and must be converted to mg/L P or N. The following calculations are used:

 $P = PO4 \times 0.3261$ $N = NO3 \times 0.2259$ $N = NH4 \times 0.7765$

From June 2009, laboratory values are reported as PO4_P and NH4_N although NO3 values must still be converted to mg / L N. All nutrient data are entered into a Microsoft Excel worksheet and processed using the NutrientQAQC Excel macro. The NutrientQAQC macro sets up the data worksheet, metadata worksheets, and MDL worksheet; adds chosen parameters and facilitates data entry; allows the user to set the number of significant figures to be reported for each parameter and rounds using banker's rounding rules; allows the user to input MDL values and automatically flags and codes values below MDL; calculates parameters chosen by the user and automatically flags for component values below MDL and negative values, and missing data; allows the user to apply QAQC flags and codes to the data; graphs selected parameters for review; calculates simple statistics min, max, mean, average & standard deviation; append files; and export the resulting data files to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database.

The research coordinator is responsible for QA/QC of the data.

10. Parameter titles and variable names by data category:

Required NOAA/NERRS System-wide Monitoring Program water quality parameters are denoted by an asterisk "*".

Data Category	Parameter	Variable Name	Units
Phosphorus and Nitrogo	en:		
	*Orthophosphate	PO4F	mg/L as P
	*Nitrate, Filtered	NO3F	mg/L as N
	*Ammonium, Filtered	NH4F	mg/L as N
Plant Pigments:			
O	*Chlorophyll a	CHLA_N	ug/L
	Phaeophytin	PHEA_N	ug/L
Other Lab Parameters:			
	Total Suspended Solids	TSS	mg/L
	Chloride	Chloride	mg/L
	Sulphate	Sulphate	mg/L
Field Parameters:			
	Water Temperature	WTEM_N	degrees C
	Specific Conductivity	SCON_N	mS/cm
	Salinity	SALT_N	ppt
	Dissolved oxygen (conc.)	DO_N	mg/L
	Dissolved oxygen (% sat)	DO_S_N	%
	pH	PH_N	SU
	Air Temperature	ATEM_N	degrees C

Notes:

- 1. Time is coded based on a 2400 hour clock and is referenced to Eastern Standard Time (EST).
- 2. Reserves have the option of measuring either NO23 or NO2 or NO3.

- 3. "_N" indicates a non-continuous measurement
- 4. Field parameters are not measured for diel samples, however cloud cover and precipitation are recorded at the time of deployment, once during sampling, and at the time of retrieval.

11. Measured and calculated laboratory parameters:

a) Variables measured directly:

Nitrogen species: NO3F, NH4F

Phosphorus species: PO4F

Other: CHLA_N, PHEA_N, TSS, Chloride, Sulphate

b) Computed:

None

12. Limits of detection:

A method detection limit (MDL), the lowest concentration of a parameter an analytical procedure can reliably detect, has been established by the CIES Analytical Laboratory for each parameter. The MDL is determined as three times the standard deviation of a minimum of 10 replicates of a single low concentration sample. These values are reviewed and revised periodically. The current MDLs are listed below.

<u>Parameter</u>	Variable	MDL	Dates in Use
Ammonium	NH4F	$0.02~{\rm mg/L}$ as N	1991-2011
Nitrate	NO3F	$0.02\ \text{mg/L}$ as N	2009-2011
Orthophosphate Chlorophyll a	PO4F CHLA_N	$0.002~\mathrm{mg/L}$ as P $0.02~\mathrm{ug/L}$	2009-2011 2004-2011
Phaeophytin	PHEA_N	$0.02~\mathrm{ug/L}$	2004-2011
Total Suspended Solids	TSS	0.1 mg/L	2004-2011
Chloride	Chloride	$0.02~\mathrm{mg/L}$	2009-2011
Sulphate	Sulphate	$0.02~\mathrm{mg/L}$	2009-2011

13. Laboratory methods:

a) Parameter: TSS

Method reference: Standard Methods for Examination of Water and Wastewater, # 2540D.

Method Descriptor: Well-mixed samples are filtered through a combusted, weighed glass fiber filter and the residue on the filter (suspended solids) is dried to a constant weight. The concentration of TSS (mg/L) is calculated by subtracting the original weight of the filter from the weight of the filter + suspended solids and dividing by the total volume filtered.

Preservation method: N/A

b) Parameter: NH4F

Method Reference: Lachat Quikchem8000 Flow Injection Analyzer using Lachat method 10-107-06-1-J Method Descriptor: Ammonium reacts with alkaline phenol, and sodium hypochlorite to form indophenol blue. Sodium nitroprusside (nitroferricyanide) is added to enhance sensitivity. The absorbance of the reaction product is measured at 630 nm, and is directly proportional to the original ammonium concentration in the sample. Preservation Method: Samples are filtered using 25mm GF/F filters within 24 h of collection and 1 ml of 1 N H2SO4 is added to the filtrate. Samples are stored at 4°C for up to one month prior to analysis.

c) Parameter: NO3F

Method Reference: Small, H., Stevens, T.S. and Bauman, W.C. 1975. Anal. Chem. 47:1801-1809.

Method Descriptor: A small volume of sample is injected into an ion-exchange column and eluted with a flowing stream of carbonate-bicarbonate. The sample is pumped through two different ion exchange columns, a suppressor device, and into a conductivity detector. Ions from the sample are separated into discrete bands due to different retention times, and the ions are compared to known standards.

Preservation Method: Samples are filtered using 25mm GF/F filters within 24 h of collection. Samples are stored at 4°C for up to two months prior to analysis.

d) Parameter: PO4F

Method Reference: Lachat Quickchem8000 Flow Injection Analyzer using Lachat method 10-115-01-1-M with modifications to eliminate silica interference, Phosphomolydate method.

Method Descriptor: The orthophosphate ion reacts with ammonium molybdate and antimony potassium tartrate under acidic conditions to form a complex. This complex is reduced with ascorbic acid to form a blue complex which absorbs light at 880nm. The absorbance is proportional to the concentration of orthophosphate in the sample. Note that the stock Lachat Color Reagent was modified to decrease the level of silica interference. It was found that a decrease in pH of this reagent would decrease the level of silica interference (Jarvie et al 2002). However, a decrease in pH also creates a decrease in color development. Therefore a series of experiments were conducted to determine the optimal level of sulfuric acid concentration within the color reagent. The optimal sulfuric acid concentration that was determined is 1.98N.

Preservation Method: Samples are filtered with 25mm GF/F filters within 24 h of collection. Samples are stored at 4°C for up to one month prior to analysis.

e) Parameter: CHLA_N and PHEA_N

Method references:

Holm-Hansen, O. and B. Riemann. 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438-447.

Wetzel, R.G. and G.E. Likens. 1991. Limnological Analysis, 2nd ed. Springer-Verlag, New York: 168-169. Method Descriptor: CHLA and PHEA are measured fluormetrically. Standards with known CHLA concentrations in 90% acetone are used to determine a relationship between CHLA and fluorescence (F). The standards are then acidified with 0.1 N HCL to determine the fluorescence ratio (t) of CHLA and PHEA for pure chlorophyll. Sample filters are extracted using basic methanol (5 ml) and the fluorescence is recorded (Rb). The samples are then acidified with 0.1 N HCL and the fluorescence is recorded (Ra). The following equations are used to determine CHLA and PHEA concentrations in samples:

```
CHLA (ug/L) = F*(t/t-1)*(Rb-Ra)*(v/V)
PHEA (ug/L) = F*(t/t-1)*(tRa-Rb)*(v/V)
```

where v is the volume used for extraction (ml) and V is the volume filtered (ml).

Preservation method: Filters are stored in borosilicate vials in the dark at -20°C. Extraction solvent is not added until 24 h prior to fluorometry.

f) Parameter: Chloride

Chloride ions present in water are analyzed using Standard Method 4110 – Determination of Anions by Ion Chromatography. We use a 4 mm-bore Dionex ICS 2000 ion chromatograph equipped with an EG50 eluent generator, AS18 analytical column, AG14 guard column, ASRS suppressor and 25 uL sample injection loop. Method references: Standard Methods for the Examination of Water and Wastewater, 21st edition, 2005, American Public Health Association, Washington, D.C., pgs 4.3 – 4.5

Preservation Method: Samples are filtered using 25mm GF/F filters within 24 h of collection. Samples are stored at 4°C for up to two months prior to analysis.

g) Parameter: Sulphate

Sulphate ions present in water are analyzed using Standard Method 4110 – Determination of Anions by Ion Chromatography. We use a 4 mm-bore Dionex ICS 2000 ion chromatograph equipped with an EG50 eluent generator, AS18 analytical column, AG14 guard column, ASRS suppressor and 25 uL sample injection loop. Method references: Standard Methods for the Examination of Water and Wastewater, 21st edition, 2005, American Public Health Association, Washington, D.C., pgs 4.3 – 4.5

Preservation Method: Samples are filtered using 25mm GF/F filters within 24 h of collection. Samples are stored at 4°C for up to two months prior to analysis.

14. Field and Laboratory QA/QC programs:

- a) Precision
- i) Field variability

At each monitored site, monthly duplicate grab samples are true replicates, collected separately and sequentially, not simultaneously.

During diel sampling at Tivoli South Bay, two samples are collected at each time, but one is acidified for ammonium analysis. Therefore, diel samples do not have replicates.

ii) Laboratory variability

At each monitored site, duplicate monthly grab samples are analyzed for NO3F, PO4F, and NH4F, providing two true replicates for each parameter. CHLA_N and PHEA_N are also analyzed as true replicates, one from each grab sample.

Diel samples are analyzed for NO3F, PO4F, NH4F, CHLA_N and PHEA_N, but only one replicate is analyzed for each parameter. Analytical QA/QC procedures include periodic duplicate analysis of the same sample in order to verify precision of the analytical instrumentation.

iii) Inter-organizational Splits

None.

14. Field and Laboratory QA/QC programs:

- b) Accuracy
- i) Sample Spikes None
- ii) Standard Reference Material Analysis

A blind standard test was performed in December 2010 for NH4, NO3, NO3(as N), and PO4. A 1% dilution of a standard was utilized to perform said Analysis. A duplicate of Standard A was also submitted as standard "B". The analyzed standard samples yielded the following results:

Nutrient	Standard Conc Range	1% Dilution	IES Results A	IES Results B	Pass/Fail
	(mg/L)	(10mL in 1L)	(mg/L)	(mg/L)	
NH4	0.65-19 mg/l	.006519	0.14	0.11	Pass
NO3-(as N)	0.25 - 40 mg/l	.002540	0.075	0.073	Pass
NO3+	0.25-40 mg/l	.002540	0.33	0.32	Pass
PO4	0.5 -5.5 mg/l	0.005 - 0.055	0.032	0.029	Pass
CI	N/A	N/A	2.52	2.62	N/A
SO3	N/A	N/A	4.4	1.05	N/A

All analyzed results were reported to be within acceptable range for the dilution. Both CL and SO3 were also analyzed; however, no concentration range was provided by the standard manufacturer for comparison.

iii) Cross Calibration Exercises None

15) QAQC flag definitions

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). QAQC flags are applied to the nutrient data during secondary QAQC to indicate data that are out of sensor range low (-4), rejected due to QAQC checks (-3), missing (-2), optional and were not collected (-1), suspect (1), and that have been corrected (5). All remaining data are flagged as having passed initial QAQC checks (0) when the data are uploaded and assimilated into the CDMO ODIS as provisional plus data. The historical data flag (4) is used to indicate data that were submitted to the CDMO prior to the initiation of secondary QAQC flags and codes (and the use of the automated primary QAQC system for WQ and MET data). This flag is only present in historical data that are exported from the CDMO ODIS.

- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

16) QAQC code definitions –

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the sample or sample collection, sensor errors document common sensor or parameter specific problems, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be

applied to a particular data point. However, a record flag column (F_Record) in the nutrient data allows multiple comment codes to be applied to the entire data record.

General errors

GCM	Calculated value could not be determined due to missing data
GCR	Calculated value could not be determined due to rejected data

GDM Data missing or sample never collected GQD Data rejected due to QA/QC checks GQS Data suspect due to QA/QC checks

Sensor errors

ODI	TT 1 1 1			
SBL	Value below	minimiim lii	mit of n	nethod detection

- SCB Calculated value could not be determined due to a below MDL component
- SCC Calculation with this component resulted in a negative value
- SNV Calculated value is negative
- SRD Replicate values differ substantially
- SUL Value above upper limit of method detection

Parameter Comments

- CAB Algal bloom
- CDR Sample diluted and rerun
- CHB Sample held beyond specified holding time
- CIP Ice present in sample vicinity
- CIF Flotsam present in sample vicinity
- CLE Sample collected later/earlier than scheduled
- CRE Significant rain event
- CSM See metadata
- CUS Lab analysis from unpreserved sample

Record comments

- CAB Algal bloom
- CHB Sample held beyond specified holding time
- CIP Ice present in sample vicinity
 CIF Flotsam present in sample vicinity
- CLE Sample collected later/earlier than scheduled
- CRE Significant rain event
- CSM See metadata
- CUS Lab analysis from unpreserved sample

Cloud cover

- CCL clear (0-10%)
- CSP scattered to partly cloudy (10-50%)
- CPB partly to broken (50-90%)
- COC overcast (>90%)
- CFY foggy
- CHY hazy
- CCC cloud (no percentage)

Precipitation

PNP none
PDR drizzle
PLR light rain
PHR heavy rain
PSQ squally

```
PFQ
            frozen precipitation (sleet/snow/freezing rain)
  PSR
            mixed rain and snow
Tide stage
  TSE
            ebb tide
  TSF
             flood tide
  TSH
            high tide
  TSL
            low tide
Wave height
  WH0
            0 to < 0.1 meters
  WH1
            0.1 to 0.3 meters
  WH2
            0.3 to 0.6 meters
  WH3
            0.6 \text{ to} > 1.0 \text{ meters}
  WH4
            1.0 to 1.3 meters
  WH5
            1.3 or greater meters
Wind direction
  N
            from the north
  NNE
            from the north northeast
  NE
            from the northeast
  ENE
            from the east northeast
  Е
             from the east
  ESE
            from the east southeast
  SE
             from the southeast
            from the south southeast
  SSE
  S
            from the south
  SSW
            from the south southwest
  SW
            from the southwest
  WSW
            from the west southwest
  W
            from the west
  WNW
            from the west northwest
  NW
            from the northwest
  NNW
             from the north northwest
Wind speed
  WS0
            0 to 1 knot
  WS1
            > 1 to 10 knots
            > 10 to 20 knots
  WS2
  WS3
            > 20 to 30 knots
  WS4
            > 30 to 40 knots
  WS5
            > 40 \text{ knots}
```

17) Other remarks/notes

Data may be missing due to problems with sample collection or processing. Laboratories in the NERRS System submit data that are censored at a lower detection rate limit, called the Method Detection Limit or MDL. MDLs for specific parameters are listed in the Laboratory Methods and Detection Limits Section (Section II, Part 12) of this document. Concentrations that are less than this limit are censored with the use of a QAQC flag and code, and the reported value is the method detection limit itself rather than a measured value. For example, if the measured concentration of NO23F was 0.0005 mg/l as N (MDL=0.0008), the reported value would be 0.0008 and would be flagged as out of sensor range low (-4) and coded SBL. In addition, if any of the components used to calculate a variable are below the MDL, the calculated variable is removed and flagged/coded -4 SCB. If a calculated value is negative, it is rejected and all measured components are marked suspect. If

additional information on MDL's or missing, suspect, or rejected data is needed, contact the Research Coordinator at the Reserve submitting the data.

Negative numbers reported for some phaeophytin values are thought to be due to an incomplete acidification of the pigment in basic methanol solution. More care will be given to thoroughly mix the sample during the procedure. Negative numbers may also be due in part to dilution and re-running of samples.

Flagged data coded "CSM- See Metadata"

All Sites - 9/1/11

Sample collection during the month of August could not be obtained due dangerous sampling conditions which occurred during the days following Tropical Storm Irene (08/27/11 -08/28/11). Samples were collected as soon as high water levels receded and allowed access to typical sampling locations. Samples were collected during very atypical conditions. The results were reviewed and the data appears to fit the conditions.

TS - 7/13/11 17:00 + 19:30

Collected samples could not be processed due damage which occurred to the bottles at an unknown time. Collection bottle's cracked due to some physical damage, and entirety of samples were not collected.

TS - 12/7/11 20:00

Sample bottle froze and cracked during deployment. Upon thawing, the entirety of the sample was lost for processing.