Jacques Cousteau (JAC) NERR 2005 Nutrient Metadata

(formerly known as Mullica River (MUL) NERR)

January 2005 to December 2005

Latest Update: May 22, 2025

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons

a) Reserve contact

Michael J. Kennish Institute of Marine and Coastal Sciences Rutgers University New Brunswick, New Jersey 08901 Phone: 732-932-6555 (ext. 240) e-mail: kennish@imcs.rutgers.edu

b) Laboratory contact

Ronald J. Lauck, Jr.
Institute of Marine and Coastal Sciences
Rutgers University
New Brunswick, New Jersey 08901
Phone: 732-932-6555 (ext. 561)
e-mail: lauck@imcs.rutgers.edu

c) Other contacts and programs

Gregg P. Sakowicz
Field Researcher/SWMP Technician
Jacques Cousteau National Estuarine Research Reserve
Rutgers University Marine Field Station
800 Great Bay Blvd.
C/o 132 Great Bay Blvd.
Tuckerton, NJ 08087

Phone: 609-296-5260 (ext. 267) e-mail: sakowicz@imcs.rutgers.edu

2) Research objectives

a) Monthly grab

Monthly grab samples for the Jacques Cousteau National Estuarine Research Reserve (JCNERR) are taken along a well-defined salinity gradient of the Mullica River-Great Bay estuarine system. The sites where the samples are taken along this salinity gradient include Lower Bank and Chestnut Neck in the Mullica River and Buoy 126 and Buoy 139 in Great Bay (see site descriptions below). These four sampling sites span a distance of more than 30 km. In addition a monthly grab sample is taken in Little Egg Harbor estuary at Buoy 115 (see site description below). A major objective of this monitoring program is to determine the nutrient concentrations along the aforementioned salinity gradient over a long-term time series. Previous studies have shown that nitrogen standing stocks in the Mullica River-Great Bay Estuary largely consist of nitrate, ammonium, and nitrogen in organic combination. The nitrogen enters at the head of the estuary largely in inorganic form, but in Great Bay it is transformed mainly to organic combination. However, more data are needed to accurately assess the concentrations of the various nitrogen forms along the salinity gradient, and to determine seasonal variations in the concentrations over a protracted period of several years. It is also necessary to obtain continuous monthly measurements of phosphate, which is also a macronutrient of considerable importance to the system.

Monthly grab samples are needed to obtain accurate measurements of nitrate, ammonium, and phosphate because of their overriding importance to primary production in waters of the JCNERR. These data can then be compared to chlorophyll *a* measurements to assess their relationship to phytoplankton biomass. A major goal of JCNERR is to characterize biotic communities along the salinity gradient of the Mullica River-Great Bay Estuary, and it is therefore vital to obtain physical-chemical measurements (including nutrient concentrations) along the gradient. Nutrient data are also valuable to SWMP bio-monitoring projects being planned for 2004 and 2005. A part of this effort is to determine the nutrient concentrations along the salinity gradient, and how these concentrations are influencing biotic processes down-estuary. In addition, a long-term objective of monthly grab sampling is to develop a nutrient (nitrogen) budget for JCNERR. To develop a budget, data (concentrations) are needed on the various nitrogen species monitored at the SWMP sites as well as data collected on the nitrogen forms associated with atmospheric deposition. An accurate nutrient budget will be useful for analyzing the overall productivity of estuarine waters in the JCNERR, which will be important to resource managers of the system.

b) Diel sampling program

Diel sampling is conducted via an ISCO automated sampler at Buoy 126 in Great Bay to assess nutrient concentrations and changes in concentrations over tidal cycles. In addition, these data augment monthly grab samples taken at Buoy 126 (see above). It is believed that nutrients entering from the watershed estuary are not utilized within the Mullica River because of the lack of light penetration. The great depth of the river and the dark color from the tannins flowing down the river from the Pine Barrens hinder the utilization of these nutrients by planktonic organisms. Where the river empties into the bay, light penetration reaches the bottom and allows utilization of the nutrients by phytoplankton, making this region more productive. A major goal of ISCO sampling is to compare nutrient concentrations over a 24-hour period with phytoplankton rate processes. To this end, JCNERR is also deploying a backscatter fluorometer to obtain an accurate measure of

phytoplankton biomass in the area of Buoy 126. By relating nutrient measures with chlorophyll *a* over a continuous diel period, it is hoped that a strong correlation can be made of the significance of nutrient inputs to phytoplankton rate processes in the system. Diel sampling at Buoy 126 will also be useful in the development of a nutrient budget for the system.

3) Research methods

a) Monthly grab sampling program

Monthly grab samples were taken at four principle JCNERR datasonde stations within the Mullica River-Great Bay estuary (Buoy 126, Buoy 139, Chestnut Neck and Lower Bank) and at one station in the Little Egg Harbor estuary (Buoy 115). Samples were collected at approximately 30-day intervals. Effort was made to obtain grab samples at or before slack low tide conditions (+3 hours before low tide), and always on the same calendar day. No distinction was made between neap and spring tide conditions. Replicate (N=2) samples were collected by hand with a bucket at an approximate depth of 10 cm. All samples were collected in amber, nalgene, 500 ml sample bottles that were previously acid washed (15 % H₂SO₄), rinsed (5x) with distilled-deionized water, and rinsed (1x) with ambient water prior to collection of the sample. Samples were immediately placed on ice in a cooler and returned to the laboratory at the Rutgers Marine Field Station. Once in the laboratory, samples were shaken and processed for nutrient and Chl a analysis. The processed samples were then transported to Rutgers University, IMCS and stored in a –20 °C freezer until analyses were performed.

b) Diel sampling program

Monthly diel samples were taken at the principle long-term datasonde station Buoy 126. Samples were collected at approximately 30-day intervals. Sampling occurred during any tidal condition and no distinction was made between spring and neap tide conditions. Samples were collected over a lunar day (24hr:48min) time period at 2 hour intervals using an ISCO auto-sampler. Samples were taken at a fixed depth, approximately 2.0 meters from the bottom. All samples were collected in clear, plastic, 1000 ml ISCO sample bottles. Samples were retrieved as soon as possible after completion of the auto-sampler program. Samples were then transferred from the clear, plastic ISCO bottles to 500 ml amber nalgene bottles that were previously acid washed (15 % H₂SO₄), rinsed (5x) with distilled-deionized water, and rinsed (1x) with ambient water prior to collection of the sample. Samples were immediately placed on ice in a cooler and returned to the laboratory at Rutgers Marine Field Station. Once in the laboratory, samples were shaken and processed for nutrient and Chl a analysis. The processed samples were then transported to Rutgers University, IMCS and stored in a -20 °C freezer until analyses were performed.

4) Site location and character

The Jacques Cousteau National Estuarine Research Reserve (JCNERR) at the Mullica River-Great Bay estuary is located on the south-central coastline of New Jersey. The estuary is near Tuckerton, New Jersey about 14 kilometers north of Atlantic City. Water is the predominant habitat in the JCNERR, covering 27,599 ha (~60% of the area). Marsh blankets an additional 13,034 ha (>28% of the area). Forest cover is the next largest category; it amounts to 4,616 ha (~10% of the area). Developed landscape, which is relatively sparse, provides the least cover (553 ha or slightly over 1% of the area). Domestic development is concentrated in two small communities, Mystic Island and Tuckerton; the boundaries of these communities extend to within 3 km of the margin of Great Bay. The JCNERR is considered relatively pristine. There are no known significant sources of pollution, and there are no direct-input industrial or other notable pollutants. There is some agricultural runoff into the watershed and researchers suspect that airborne pollutants resulting from industrial activities are deposited coastally (highly dependent on air current patterns).

There are five nutrient monitoring stations in the JCNERR for which data are reported in this document: BA (Lower Bank) and NE (Chestnut Neck) sites in the Mullica River, B6 (Buoy 126) and B9 (Buoy 139) in Great Bay, and B5 (Buoy 115) in Little Egg Harbor. Data loggers are located at the four principal SWMP stations (BA, NE, B6, and B9); an extensive water quality database has been developed for these sites. Water quality data is collected ondemand at B5 via a hand-held YSI MDS 650 unit paired with a 600XL sonde.

The characteristics of the nutrient monitoring sites are summarized below:

- 1) Buoy 115 (B5) 39° 31.130' N, 74°17.230' W- This most recent monitoring site is in Little Egg Harbor Bay, bordering the Edwin B. Forsythe Refuge on Holgate (Long Beach Island) about 3 km northeast of the Rutgers University Marine Field Station. Although nutrient monitoring is ongoing, full-time water-quality monitoring of this non-SWMP station was discontinued in 2003 after ice-floes tore the hardware and housings from the structure. The following site description is from 2002 (the more recent year-long dataset); we do not expect this description to differ significantly from present conditions: The depth of the bay at this site is approximately 3 meters, with a tidal range of 6.73 to 8.76 meters. The bottom consists predominantly of sand with little shell or organic material. The average pH is 8.0, with a range of 7.07 to 8.30. Salinity values averaged 30.8 ppt, with a range of 29.3 to 32.5 ppt. Groundwater inputs from margins of estuary as well as surface flow from Mullica River account for most of the freshwater entering that affect this site. The input of freshwater from local precipitation and marsh surface runoff is of secondary importance.
- 2) Buoy 126 (B6) 39° 30.478' N, 74° 20.308' W- located three kilometers from Little Egg Inlet on the eastern side of Great Bay and is 100 meters from the nearest land that is a natural marsh island. This is a naturally deep area that has never been dredged. It is located about 0.5 kilometers from an area in the Intracoastal Waterway, which is dredged regularly. The dredged material is coarse sand. The data logger at this location is attached to Intracoastal Waterway Buoy 126 and is the closest monitoring station to Little Egg Inlet. This site can be characterized by having strong tidal currents, 2-3 knots, fine to course sand bottom with an extensive blue mussel bed surrounding the area. Groundwater inputs from margins of the estuary as well as surface flow from Mullica River account for the majority of freshwater

coming into the system at this site, followed by input from rainwater from the marsh surface and above. In 2005, the average recorded depth was 2.98 meters with a range of 1.58 - 4.19 meters. Salinity ranged from 18.2 - 31.4 parts per thousand.

- 3) Buoy 139 (B9) 39° 29.883'N, 74° 22.873' W- is located 4 kilometers from Buoy 126 on the western side of Great Bay and is located about one to one and one-half kilometers from land. The closest landform is an extensive salt marsh about 1.5 kilometers wide, which borders the upland area. This area is dredged on a regular basis every five to six years to maintain the channel at a depth of eight feet by the U.S. Army Corp of Engineers. The surrounding depth of the bay is approximately 2 meters. This site is characterized by having maximum currents of about 1.5 knots with a muddy sand bottom and with little structure or shell. Groundwater inputs from margins of the estuary as well as surface flow from Mullica River account for the majority of freshwater coming into the system at this site, followed by input from rainwater from the marsh surface and above. In 2005, the average recorded depth was 1.59 meters with a range of 0.64 2.89 meters. Salinity ranged from 16.2 31.2 parts per thousand.
- 4) Chestnut Neck (NE) 39° 32.872' N, 74° 27.676' W located 12 kilometers up the Mullica River from the mouth of the river. The river begins at a line drawn between Graveling Point and Oysterbed Point on the northwestern side of Great Bay. The Mullica River at this location is quite wide, about 250 meters. The data logger is attached to the dock of a small marina along the southern shore of the river adjacent to the main channel. This location has never been dredged. The site is characterized by having tidal currents of less then one knot, during both ebb and flood tide, and has a sandy bottom. Freshwater input is primarily from groundwater and watershed runoff. In 2005, the average recorded depth was 1.51 meters with a range of 0.39 3.08 meters. Salinity ranged from 2.0 26.8 parts per thousand.
- 5) Lower Bank (BA) 39° 35.618' N, 74° 33.091' W located 13 kilometers upriver of the Chestnut Neck location. The Mullica River at this site is about two hundred meters wide. The data logger is attached to a bridge going over the Mullica River and is located in the center of the river. The northern bank of the river is sparsely developed with single-family houses and has a steep bank about five meters high. The southern shore has an extensive marsh and fresh water wetland area about three kilometers wide. This site can be characterized by having fast tidal currents, just over one knot, deep water, and fine sand sediment. Freshwater input is primarily from groundwater and watershed runoff. In 2005, the average recorded depth was 1.93 meters with a range of 0.70 3.05 meters. Salinity ranged from 0.0 19.4 parts per thousand.

5) Code variable definitions

```
jacb5nut = Jacques Cousteau Reserve nutrient data for Buoy 115
jacb6nut = Jacques Cousteau Reserve nutrient data for Buoy 126
jacb9nut = Jacques Cousteau Reserve nutrient data for Buoy 139
jacnenut = Jacques Cousteau Reserve nutrient data for Chestnut Neck
```

jacbanut = Jacques Cousteau Reserve nutrient data for Lower Bank

The monitoring codes are set as "1" to indicate grab samples and "2" to indicate diel samples. Replicates are also given specific codes. Grab samples in which duplicate samples are taken utilize a "1" for the first sample and a "2" for the second sample. Diel samples are always labeled with a "1" since only one sample is taken at each 2 hr intervals.

6) Data Collection Period

DIEL (ISCO) SAMPLING

Site	Month	Start Date	Start Time	End Date	End Time
В6	January	*			
B6	February	*			
B6	March	03/31/05	12:00	04/01/05	10:00
B6	April	04/21/05	12:00	04/22/05	10:00
B6	May	05/30/05	07:00	05/31/5	05:00
B6	June	06/28/05	11:00	06/29/05	09:00
B6	July	07/19/05	14:00	07/20/05	12:00
B6	August	08/22/05	15:00	08/23/05	13:00
B6	September	09/27/05	11:00	09/28/05	09:00
B6	October	10/30/05	10:00	10/31/05	08:00
B6	November	**			
B6	December	*			

^{*} No sampling due to ice-over or freezing overnight temperatures that would damage raw samples.

GRAB SAMPLING

Site	Month	Start Date	Rep 1 Time	Rep2 Time
B5 B5	January February	* ***		
B5	March	03/22/05	09:57	10:01
B5	April	04/19/05	10:33	10:35
B5	May	05/23/05	10:44	10:48
B5	June	06/16/05	09:45	09:48
B5	July	07/06/05	12:20	12:23
B5	August	****		
B5	September	09/19/05	14:03	14:06
B5	October	10/18/05	15:20	15:24

^{**}The scheduled sampling period was not collected and/or processed due to failure of source of DI water. These missing data were excused by the CDMO oversight committee

B5	November	****		
B5	December	****		
В6	January	*		
B6	February	02/24/05	10:32	10:36
B6	March	03/22/05	09:27	09:31
B6	April	04/19/05	09:55	09:57
B6	May	05/23/05	11:05	11:08
B6	June	06/16/05	09:15	09:18
B6	July	07/06/05	11:55	11:58
B6	August	08/08/05	13:05	13:09
B6	September	09/19/05	13:34	13:37
B6	October	10/18/05	14:52	14:56
B6	November	11/28/05	10:23	10:26
B6	December	12/14/05	11:05	11:09
B9	January	*		
B9	February	***		
B9	March	03/22/05	09:39	09:42
B9	April	04/19/05	10:11	10:14
B9	May	05/23/05	10:20	10:27
B9	June	06/16/05	09:25	09:27
B9	July	07/06/05	12:08	12:11
B9	August	08/08/05	13:17	13:21
B9	September	09/19/05	13:41	13:45
B9	October	10/18/05	15:04	15:07
B9	November	11/28/05	10:36	10:41
В9	December	****		
NE	January	*		
NE	February	02/24/05	12:16	12:22
NE	March	03/22/05	11:50	11:52
NE	April	04/19/05	12:09	12:11
NE	May	05/23/05	13:35	13:41
NE	June	06/16/05	11:47	11:52
NE	July	07/06/05	14:02	14:05
NE	August	08/08/05	15:03	15:06
NE	September	09/19/05	15:48	15:51
NE	October	10/18/05	13:37	13:41
NE	November	11/28/05	13:50	13:54
NE	December	12/14/05	14:04	14:08
D 4	Tamas :	*		
BA DA	January		11.47	11.55
BA BA	February March	02/24/05 03/22/05	11:47 11:26	11:55
BA BA	April	03/22/03	11:26	11:28 11:42
DΑ	Aprii	U 1 /17/U3	11.40	11.42

BA	May	05/23/05	13:12	13:18
BA	June	06/16/05	11:04	11:07
BA	July	07/06/05	14:51	**
BA	August	08/08/05	14:32	14:35
BA	September	09/19/05	15:18	15:22
BA	October	10/18/05	13:10	13:14
BA	November	11/28/05	13:22	13:26
BA	December	12/14/05	13:38	13:41

^{*} No sampling due to ice-over conditions.

7) Associated researchers and projects

These provisional nutrient data were provided to Beth Darrow Condon of Virginia Institute of Marine Sciences for a synthesis of data from the Mid-Atlantic NERRS sites.

These data will be used by JCNERR staff in comparison to nutrient samples collected in Little Egg Harbor and Barnegat Bay during studies of Submerged Aquatic Vegetation in June-December 2005.

8) Distribution

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR water quality data and metadata can be obtained by request from the Research Coordinator at the individual NERR site (please see Section 1. Principal investigators and

^{**} Sample bottle lost in field, so no sample was retrieved or processed

^{***} No sample taken at SWMP station due to weather.

^{****} No sample taken at auxiliary (non-SWMP) station due to weather.

^{****} No sample taken because no boat was available.

contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in text tabdelimited format.

II. Physical Structure Descriptors

9) Entry verification

Monthly nutrient and plant pigment data files, in excel format, are sent to JCNERR by the Rutgers University, IMCS, Ecosystems Lab. Files consist of sampling station ID, date and time and parameter values expressed in unit concentrations. The Laboratory Supervisor, Ron Lauck, verifies all parameter values in the excel file through cross comparison with the laboratory data sheets. The data are reviewed for values that appear erroneous or illogical. Any samples found to have questionable results are reanalyzed. JCNERR staff (Gregg P. Sakowicz) then reviews the data files for missing data denoted by a blank cell "" and comment coded "M". Values below the detection limit (MDL) are replaced with the MDL value itself and comment coded with a "B".

10) Parameter titles and variable names by data category

Required NOAA/NERRS System-wide Monitoring Program water quality parameters are denoted by an asterisks "*".

Data Category	Parameter	Variable Name	Units of Measure
Phosphorus a	and Nitrogen:		
	*Orthophosphate	PO4F	mg/L as P
	*Nitrite + Nitrate, Filtered	NO23F	mg/L as N
	*Ammonium, Filtered	NH4F	mg/L as N
	Dissolved Inorganic Nitroge	n DIN	mg/L as N
Plant Pigmer	nts:		
_	*Chlorophyll a	CHLA_N	$\mu g/L$

Notes:

- 1. Time is coded based on a 2400 hour clock and is referenced to Eastern Standard Time (EST).
- 2. Reserves have the option of measuring either NO23 or NO2 or NO3.

11) Measured and calculated laboratory parameters

a) Variables measured directly

Nitrogen species: NO23F, NH4F

Phosphorus species: PO4F Other: CHLA

b) Computed variables

DIN: NO23F+NH4F

12) Limits of detection

Method Detection Limits (MDL), the lowest concentration of a parameter that an analytical procedure can reliably detect, have been established by the Rutgers University, IMCS, Ecosystems Laboratory. The MDL is determined as 3 times the standard deviation of a minimum of 7 replicates of a single low concentration sample. Table 1 presents the current MDL's; these values are reviewed and revised periodically. Methods are from Lachat Instruments QuikChem methods.

Table 1. Method Detection Limits (MDL) for measured water quality parameters.

Table 1. Method Detection Elimits (MDE) for incustrict water quarty parameters.				
Parameter	Variable	Method	MDL mg/L	Dates in use
			as N or P	
Ammonium	NH4F	31-07-06-1-A	0.001	Jan 2003 -
				present
Nitrate/Nitrite	NO23F	30-107-04-1-A	0.01	Jan 2003 -
				present
Orthophosphate	PO4F	31-115-01-3-A	0.001	Jan 2003 -
				present
Chlorophyll a	CHLA	EPA 445.0	0.01 (μg/L)	Jan 2003 -
				present

13) Laboratory methods

i) Parameter: PO4F

Rutgers University, IMCS, Ecosystems Lab Laboratory Method Method Reference: Lachat Instruments, 1993. QuikChem Method 31-115-01-3-A. Method Descriptor: Samples were filtered with a 0.45 µm membrane filter and subjected to ammonium molybdate and antimony potassium tartate under acidic conditions to form a complex. The complex is reduced with ascorbic acid to form a blue complex that absorbs light at 880 nm.

Preservation Method: Stored in dark at -20 °C for up to 30 days.

ii) Parameter: NO23F

Rutgers University, IMCS, Ecosystems Lab Laboratory Method Method Reference: Lachat Instruments, 1992. QuikChem Method 30-107-04-1-A. Method Descriptor: Samples were filtered with a 0.45 µm membrane filter. Nitrate is reduced to nitrite by passage of sample through a copperized cadmium column. The nitrite (reduced nitrate plus original nitrite) is then determined with sulfanilamide under acidic conditions to form a diazonium ion. The diazonium ion is coupled with N-

(1-naphthyl)ethylenediamine dihydrochloride, which results in a pink dye that absorbs at 520 nm.

Preservation Method: Stored in dark at -20 °C for up to 14 days.

iii) Parameter: NH4F

Rutgers University, IMCS, Ecosystems Lab Laboratory Method

Method Reference: Lachat Instruments, 1993. QuikChem Method 31-107-06-1-A.

Method Descriptor: Samples were filtered with a $0.45~\mu m$ membrane filter. The method used is based on the Berthelot reaction. Samples are subjected to hypochlorite-phenol, which results in indophenol blue. The indophenol blue is measured at 630~nm and is proportional to the ammonium concentration.

Preservation Method: Stored in dark at -20 °C for up to 3 days.

iv) Parameter: DIN

Rutgers University, IMCS, Ecosystems Lab Laboratory Method

Method Reference: N/A

Method Descriptor: Dissolved inorganic nitrogen is calculated by adding the ammonium concentration to the nitrate plus nitrite concentration. Ammonium and

nitrate plus nitrite concentrations are determined as stated above.

Preservation Method: N/A

v) Parameter: CHLA

Rutgers University, IMCS, Ecosystems Lab Laboratory Method

Method Reference: US.EPA 1997. Method 445.0

Method Descriptor: Samples with a known volume were filtered with a $0.45~\mu m$ membrane filter. Samples were dissolved in 5 ml 90% acetone/ 10% MgCO₃ solution.

Fluorescence determined using a Shimadzu RF-1501 spectrofluorometer.

Preservation Method: Filter is drawn dry, removed, placed in a glass tube with a phenolic screw cap, wrapped in aluminum foil and stored at -20 °C for up to 30 days.

14) Reporting of missing data and data with concentrations lower than method detection limits.

Nutrient/Chla comment codes and definitions are provided in the following table. Missing data are denoted by a blank cell " " and commented coded with an "M". Laboratories in the NERRS System submit data that are censored at a lower detection rate limit, called the Method Detection Limit or MDL. MDL's for specific parameters are listed in the Laboratory Methods and Detection Limits Section (Section II, Part 14) of this document. Measured concentrations that are less than this limit are replaced with the minimum detection limit value and comment coded with a "B" in the variable code comment column. For example, the measured concentration of NO23F was 0.0005 mg/L as N (MDL=0.0008), the reported value would be 0.0008 with a "B" placed in the NO23F comment code column. Calculated parameters are comment coded with a "C" and if any of the components used in the calculation are below the MDL, the calculated value is removed and also comment coded with a "B". If a calculated value is negative, the value is removed and comment coded with an "N".

Note: The way below MDL values are handled in the NERRS SWMP dataset was changed in November of 2011. Previously, below MDL data from 2002-2006 were also coded with a B, but replaced with -9999 place holders. Any 2002-2006 nutrient/pigment data downloaded from the CDMO prior to December November of 2011 will contain -9999s representing below MDL concentrations.

Comment	Definition
Code	
A	Value above upper limit of method detection
В	Value below method detection limit
С	Calculated value
D	Data deleted or calculated value could not be determined due
	to deleted data, see metadata for details
Н	Sample held beyond specified holding time
K	Check metadata for further details
M	Data missing, sample never collected or calculated value could
	not be determined due to missing data
P	Significant precipitation (reserve defined, see metadata for
	further details)
U	Lab analysis from unpreserved sample
S	Data suspect, see metadata for further details

15) QA/QC programs

a) Precision

i) Field variability

JCNERR collects two successive grab samples for the monthly grab sample program.

ii) Laboratory variability

Rutgers University, IMCS, Ecosystems Lab analyzes a laboratory duplicate once for every nine samples.

iii) Inter-organizational splits

None

b) Accuracy

i) Sample spikes

Rutgers University, IMCS, Ecosystems Lab analyzes a matrix spike once for every ten samples.

ii) Standard reference material analysis

None

iii) Cross calibration exercises

None

16) Other remarks

Because the laboratory processing the samples has a MDL of 0.01 for NO23, NO23F values were only reported to the hundreths decimal place (as opposed to the recommended thousandths place).

Likewise, because the laboratory processing the samples has a MDL of 0.01 for NO23, the calculated DIN value could only be reported to the hundreths decimal place (as opposed to the recommended thousandths place).

On 05/22/2025 this dataset was updated to include embedded QAQC flags and codes for anomalous/suspect, rejected, missing, and below detection limit data. System-wide monitoring data beginning in 2007 were processed to allow for QAQC flags and codes to be embedded in the data files rather than using the original single letter codes used for the nutrient and pigment dataset along with the detailed sections in the metadata document for suspect, missing, and rejected data. Please note that prior to 2007, rejected data were deleted from the dataset so they are unavailable to be used at all. Suspect, missing, rejected and below minimum detection flags and appropriate three letter codes were embedded retroactively for dataset consistency. The QAQC flag/codes corresponding to the original letter codes are detailed below.

		Historic	
Flag/code	If also C	Letter Code	Historic Code Definition
<1>[SUL]		Α	Value above upper limit of method detection
<-4>[SBL]	<-4>[SOB]	В	Value below method detection limit
no need to flag/code unless combined		С	Calculated value
<-3>[GQD]	<>[CCR]	D	Data deleted or calculated value could not be determined due to deleted data, see metadata for details
<1>(CHB)		Н	Sample held beyond specified holding time
<0>(CSM) unless other flag		K	Check metadata for further details
<-2>[GDM]	<-2>[GOM]	М	Data missing, sample never collected or calculated value could not be determined due to missing data
<-3>[SNV] and <1>[SOC] for components		N	Negative calculated value
(CRE) or F_Record (CRE)		Р	Significant precipitation (reserve defined, see metadata for further details)
<0>(OUS)		U	Lab analysis from unpreserved sample
<1>(CSM)		S	Data suspect, see metadata for further details

Diel (ISCO) samples:

All January, February, and December 2005 diel samples are missing due to winter storm and/or ice-over conditions.*

Approximately 40mm of rain fell on 03/28/05, which was approximately 2.5 days prior to the March 2005 diel (ISCO) sampling period.

Approximately 11mm of rain fell on 04/20/05, which was 1 day prior to the April 2005 diel (ISCO) samples.

Heavy rainfall on 06/27/05, the day before the June 2005 diel sampling period.

The following diel samples are missing due to the water level dropping below the water intake of the ISCO unit:

```
04/21/05 12:00
04/22/05 10:00
05/30/05 07:00
05/30/05 09:00
05/30/05 19:00
05/30/05 21:00
```

November 2005 diel samples are missing due to the failure of the D.I. water machine at RUMFS. These missing data were excused by the CDMO oversight committee

No values were reported by the laboratory for the following (diel) parameters:

```
NO23 values for:
```

```
07/20/05 06:00, 08:00, 10:00, 12:00 and 17:00
```

PO4 values for:

```
07/20/05 06:00, 08:00, 10:00, 12:00 and 17:00
```

NH4 values for:

```
03/31/05 12:00, 14:00
04/01/05 02:00. 04:00, 06:00, 08:00, 10:00
```

Due to the above un-reported data, DIN could not be calculated for the following stations:

```
07/20/05 06:00, 08:00, 10:00, 12:00 and 17:00 03/31/05 12:00, 14:00 04/01/05 02:00. 04:00, 06:00, 08:00, 10:00
```

Grab samples:

All January grab samples are missing due to ice-over conditions. *

Grab samples were not collected at the B9 (Buoy 139) and B5 (Buoy 115)** stations in February 2005 due to snow and low-visibility conditions that were unsafe for boat navigation.

The March 2005 grab samples from B5, B9, and B6 started to freeze in a too-cold refrigerator while in the refrigerator while the technician was out to collect the BA and NE samples.

Considerable flotsam (plant material and foam) observed at BA during the April 2005 grab sampling period.

Light rainfall during previous few days before the May 2005 grab samples were collected.

Considerable pollen flotsam observed at BA during the May 2005 grab sample period.

Flotsam (Zostera blades and macroalgae) observed at B5 during the June 2005 grab sampling period.

Considerable flotsam (plant material and foam) observed at BA during the June 2005 grab sampling period.

The second grab sample (Replicate 2) for BA (Lower Bank) is missing for the July 2005 period. The sample bottle was lost in strong winds before the sample was obtained.

Grab samples were not collected at the B5 (Buoy 115)** station during August 2005. Approaching thunderstorms made for unsafe boating conditions.

Light rainfall during the collection of the August 2005 grab sample at BA.

Heavy rainfall just prior to the collection of the August 2005 grab sample at NE.

Flotsam observed during the collection of the September 2005 grab sample at BA.

Strong rains the previous week of, and strong WNW winds for three days prior to, the collection of the October 2005 grab samples. Visibly elevated turbidity was observed at all stations (B5, B6, B9, NE, and BA).

Grab samples were not collected at the B5 (Buoy 115)** station in November 2005 due to high winds, rough waves, and unsafe boating conditions.

Grab samples were not collected at the B5 (Buoy 115)** or B9 (Buoy 139) stations during December 2005 due to a lack of boat availability.

Large ice floes were observed at BA during the December 2005 grab sample collection. Some, but considerably less, ice was observed at NE.

What is recorded as the grab sample from station B6 (Buoy 126) was actually taken from the marsh bank adjacent to the Rutgers University Marine Field Station (RUMFS). No boat was available on this day to travel to the site, but the sample was obtained from waters that we believe to be representative of the water mass that passes by this station.

No values were reported by the laboratory for the following (grab sample) parameters:

```
NH4 values for:
```

04/19/05 10:14 (station B9) 11/28/05 13:26 (station BA)

ChlA values for:

04/19/05 12:09 (station NE)

```
07/06/05 12:11 (station B9)
08/08/05 14:35 (station BA)
09/19/05 14:06 (station B5)
```

Due to the above un-reported data, DIN could not be calculated for the following stations:

```
04/19/05 10:14 (station B9)
11/28/05 13:26 (station BA)
```

^{*=} these missing data were excused by the CDMO oversight committee

^{**=} this is an auxiliary station, not a designated SWMP site