Jacques Cousteau (JAC) NERR Nutrient Metadata February 2002 to December 2002 Latest Update: May 22, 2025

- I. Data Set and Research Descriptors
- 1) Principal investigator(s) and contact persons
- a) Reserve Contact

Michael J. Kennish
Institute of Marine and Coastal Sciences
Rutgers University
New Brunswick, New Jersey 08901
Phone: 732-932-6555 (X240)
e-mail: kennish@imcs.rutgers.edu

a) Laboratory Contact

Ronald J. Lauck, Jr.
Institute of Marine and Coastal Sciences
Rutgers University
New Brunswick, New Jersey 08901
Phone: 732-932-6555 (X561)
e-mail: lauck@imcs.rutgers.edu

b) Other Contacts and Programs

Amanda McGuirk Flynn
Institute of Marine and Coastal Sciences
Rutgers University
New Brunswick, New Jersey 08901
Phone: 732-932-6555 (ext 223)
e-mail: mcguirk@imcs.rutgers.edu

- 2) Research objectives
- a) Monthly Grab

Monthly grab samples for the Jacques Cousteau National Estuarine Research Reserve (JNEEER) are taken along a well-defined salinity gradient of the Mullica River-Great Bay estuarine system. The sites where the samples are taken along this salinity gradient include Lower Bank and Chestnut Neck in the Mullica River and Buoy 126 and Buoy 139 in Great Bay (see site descriptions below). These four sampling sites span a distance of more than 30 km. In addition a monthly grab sample is taken in Little Egg Harbor estuary at Buoy 115 (see site description below). A major objective of this monitoring program is to determine the nutrient concentrations along the aforementioned salinity gradient over a long-term time series. Previous studies have shown that nitrogen standing stocks in the Mullica River-Great Bay Estuary largely consist of nitrate, ammonium, and nitrogen in organic combination. The nitrogen enters at the head of the estuary largely in inorganic form, but in Great Bay it is transformed mainly to organic combination. However, more data are needed to accurately assess the concentrations of the various nitrogen forms along the salinity gradient, and to determine seasonal variations in the concentrations over a protracted period of several years.

It is also necessary to obtain continuous monthly measurements of phosphate, which is also a macronutrient of considerable importance to the system.

Monthly grab samples are needed to obtain accurate measurements of nitrate, ammonium, and phosphate because of their overriding importance to primary production in waters of the JNEERR. These data can then be compared to chlorophyll a measurements to assess their relationship to phytoplankton biomass. A major goal of JNEERR is to characterize biotic communities along the salinity gradient of the Mullica River-Great Bay Estuary, and it is therefore vital to obtain physical-chemical measurements (including nutrient concentrations) along the gradient. Nutrient data are also valuable to SWMP biomonitoring projects being planned for 2004 and 2005. A part of this effort is to determine the nutrient concentrations along the salinity gradient, and how these concentrations are influencing biotic processes down-estuary. addition, a long-term objective of monthly grab sampling is to develop a nutrient (nitrogen) budget for JNEERR. To develop a budget, data (concentrations) are needed on the various nitrogen species monitored at the SWMP sites as well as data collected on the nitrogen forms associated with atmospheric deposition. An accurate nutrient budget will be useful for analyzing the overall productivity of estuarine waters in the JNEERR, which will be important to resource managers of the system.

b) Diel Sampling Program

ISCO diel sampling is conducted at Buoy 126 in Great Bay to assess nutrient concentrations and changes in concentrations over tidal cycles. In addition, these data augment monthly grab samples taken at Buoy 126 (see above). It is believed that nutrients entering from the watershed estuary are not utilized within the Mullica River because of the lack of light penetration. The great depth of the river and the dark color from the tannins flowing down the river from the Pine Barrens prevent the utilization of these nutrients by planktonic organisms. Where the river empties into the bay, light penetration reaches the bottom and allows utilization of the nutrients by phytoplankton, making this region more productive. A major goal of ISCO sampling is to compare nutrient concentrations over a 24-hour period with phytoplankton rate processes. To this end, JNEERR is also deploying a backscatter fluorometer to obtain an accurate measure of phytoplankton biomass in the area of Buoy 126. By relating nutrient measures with chlorophyll a over a continuous diel period, it is hoped that a strong correlation can be made of the significance of nutrient inputs to phytoplankton rate processes in the system. Diel sampling at Buoy 126 will also be useful in the development of a nutrient budget for the system.

3) Research methods

a) Monthly Grab Sampling Program

Monthly grab samples were taken at four stations within the Mullica River-Great Bay estuary and at one station in the Little Egg Harbor estuary. Samples were taken at four principle JNEERR datasonde stations (Buoy 126, Buoy 139, Chestnut Neck and Lower Bank) and at one station in Little Egg Harbor estuary (Buoy 115). Samples were collected at approximately 30 day intervals. All grab samples were taken on the same day at slack low tide conditions (+1 hour before and after slack low tide). No distinction was made between neap and spring tide conditions. Replicate (N=2) samples were collected by hand with a bucket at an approximate depth of 10 cm. All samples were collected in amber, nalgene, 500

ml sample bottles that were previously acid washed (15 % H2SO4), rinsed (5x) with distilled-deionized water, and rinsed (1x) with ambient water prior to collection of the sample. Samples were immediately placed on ice in a cooler and returned to the laboratory at the Rutgers Marine Field Station. Once in the laboratory, samples were shaken and processed for nutrient and Chl a analysis. The processed samples were then transported to Rutgers University, IMCS and stored in a -20 degC freezer until analyses were performed.

b) Diel Sampling Program

Monthly diel samples were taken at the principle long-term datasonde station Buoy 126. Samples were collected at approximately 30 day intervals. Sampling occurred during any tidal condition and no distinction was made between spring and neap tide conditions. Samples were collected over a lunar day (24hr:48min) time period at 2 hour intervals using an ISCO auto-sampler. Samples were taken at approximately 0.5 meters from the bottom, reflecting the water mass sampled by the datasonde. All samples were collected in clear, plastic, 1000 ml ISCO sample bottles. Samples were retrieved after completion of the autosampler program. Samples were then transferred from the clear, plastic ISCO bottles to 500 ml amber nalgene bottles that were previously acid washed (15 % H2SO4), rinsed (5x) with distilled-deionized water, and rinsed (1x) with ambient water prior to collection of the sample. Samples were immediately placed on ice in a cooler and returned to the laboratory at Rutgers Marine Field Station. Once in the laboratory, samples were shaken and processed for nutrient and Chl a analysis. The processed samples were then transported to Rutgers University, IMCS and stored in a -20 degC freezer until analyses were performed.

4) Site location and character

The Jacques Cousteau National Estuarine Research Reserve (JNEERR) at the Mullica River-Great Bay estuary is located on the south-central coastline of New Jersey. The estuary is near Tuckerton, New Jersey about 14 kilometers north of Atlantic City. Water is the predominant habitat in the Jacques Cousteau National Estuarine Research Reserve, covering 27,599 ha (~60% of the area). Marsh blankets an additional 13,034 ha (>28% of the area). Forest cover is the next largest category; it amounts to 4,616 ha (~10% of the area). Developed landscape, which is relatively sparse, provides the least cover (553 ha or slightly over 1% of the area). Domestic development is concentrated in two small communities, Mystic Island and Tuckerton, whose boundaries extend to within 3 km of the margin of Great Bay

There are five nutrient monitoring stations in the Reserve: Lower Bank and Chestnut Neck sites in the Mullica River, Buoy 126 and 139 in Great Bay, and Buoy 115 in Little Egg Harbor. Data are reported here for the four principal datasonde stations (Lower Bank, Chestnut Neck, Buoy 126, and Buoy 139) along the estuarine salinity gradient, in addition to the site in Little Egg Harbor (Buoy 115). Data loggers are located at all of these sites, and an extensive water quality database has been developed for each site. The nutrient monitoring sites occur in undisturbed areas with little impact from development or pollution.

The characteristics of the nutrient monitoring sites are summarized below:

1) Buoy 126 (B6) - 39deg 30.478' N, 74deg 20.308' W- is located three kilometers from Little Egg Inlet on the eastern side of Great Bay. It is 100 meters from the nearest land - a natural marsh island. This is a relatively deep area that has never been dredged. It is located about

- 0.5 kilometers from an area in the Intracoastal Waterway that is dredged regularly. The dredged material is coarse sand. The data logger at this location is attached to Intracoastal Waterway Buoy 126 and is the closest monitoring station to Little Egg Inlet. This site can be characterized by having strong tidal currents (2-3 knots), fine to course sand bottom, and an extensive blue mussel bed surrounding the area. Average physical-chemical measurements for this site in 2002 are as follows: (1) the depth was 3.0 meters, with a tidal range of 1.8 to 4.3 meters; (2) the salinity averaged 30.0 ppt, with a maximum of 32.6 ppt and a minimum of 19.6 ppt. Temperatures ranged from 1.2 to 28.2 degrees Celsius. Values for pH ranged from 7.4 8.2, with an average value of 7.9. Groundwater inputs from margins of estuary as well as surface flow from Mullica River account for most of the freshwater entering that affect this site. The input of freshwater from local precipitation and marsh surface runoff is of secondary importance.
- 2) Chestnut Neck (NE) 39deg 32.872' N, 74deg 27.676' W located 12 kilometers up the Mullica River from the mouth of the river, which begins at a line drawn between Graveling Point and Oysterbed Point on the northwestern side of Great Bay. The Mullica River at Chestnut Neck is quite wide, about 250 meters. A data logger is attached to the dock of a small marina along the southern shore of the river adjacent to the main channel. Sandy bottom sediments characterize the site. The location has never been dredged. The average depth at this site is 1.6 meters with a range of from 0.5 to 2.5 meters. The depth in the middle of the Mullica River at this location is about 6 meters, with a tidal range of 0.5 to 2.5 meters. The pH averages 7.3 for the year with a range of from 6.6 to 7.9. The average salinity here is 18.6 ppt, with a range of 2.7 to 27.5 ppt. Tidal currents are less than 1 knot at the site during both ebb and flood tide. Freshwater input is primarily from groundwater and land runoff.
- 3) Lower Bank (BA) 39deg 35.618' N, 74deg 33.091' W is located 13 kilometers upriver of the Chestnut Neck location. The Mullica River at this site is about 200 meters wide. A data logger is attached to a bridge going over the Mullica River and is located in the center of the river. The northern bank of the river is sparsely developed with single-family houses and has a steep bank about five meters high. The southern shore has an extensive marsh and fresh water wetland area about 300 kilometers wide. This site can be characterized by having fast tidal currents, just over 1 knot, deep water, and fine sand sediment. The average depth is 1.6 meters with a range of 0.6 to 2.5 meters and a tidal range of 0.6 to 2.5 meters. Typical of New Jersey back-bays, pH ranges from 4.0 to 7.4. The salinity averages 4.6 ppt, with a range of from 0.0 to 18.6 ppt. The 2001 temperatures ranged from 0.0 to 31.1 degrees Celsius. Freshwater input at this site is primarily from groundwater and watershed runoff.
- 5) Buoy 139 (B9) 39deg 29.883' N, 74deg 22.873' W is located 4 kilometers from Buoy 126 on the western side of Great Bay; it is located about 1-2 kilometers from land. The closest landform is an extensive salt marsh about 1.5 kilometers wide, which borders the upland area. This area is dredged every 5 to 6 years by the U.S. Army Corp of Engineers to maintain the channel at a depth of about 2.5 meters. The surrounding depth of the bay is about 1 to 2 meters deep, with a tidal range of 1.77 to 3.29 meters. This site has maximum currents of about 1.5 knots. The bottom consists of muddy sand with little shell. The average depth is 2.47 meters, with a range of 1.77 to 3.29 meters. The average pH is 8.0, with a range of 7.2 to 8.5. Salinity values averaged 26.1 ppt during 2001, with a range of 12.1 to 32.8 ppt. Most fresh water affecting this site derives from groundwater inputs along the margins of the estuary as well as surface flow from the Mullica River.

6) Buoy 115 (B5) - 39deg 31.130' N, 74deg 17.230' W This most recent monitoring site is in Little Egg Harbor Bay, bordering the Edwin B. Forsythe Refuge on Holgate (Long Beach Island) about 3 km northeast of the Rutgers University Marine Field Station. The depth of the bay at this site is about 3 m, with a tidal range of 6.73 to 8.76 meters. The bottom consists of mainly of sand with little shell or organic material. The average pH is 8.0, with a range of 7.07 to 8.30. Salinity values averaged 30.8 ppt during 2002, with a range of 29.3 to 32.5 ppt. Groundwater inputs from margins of estuary as well as surface flow from Mullica River account for most of the freshwater entering that affect this site. The input of freshwater from local precipitation and marsh surface runoff is of secondary importance.

5) Coded variable definitions

```
jacb6nut = Jacques Cousteau Reserve nutrient data for Buoy 126
jacb9nut = Jacques Cousteau Reserve nutrient data for Buoy 139
jacb5nut = Jacques Cousteau Reserve nutrient data for Buoy 115
jacnenut = Jacques Cousteau Reserve nutrient data for Chestnut Neck
jacbanut = Jacques Cousteau Reserve nutrient data for Lower Bank
```

The monitoring codes are set as "1" to indicate grab samples and "2" to indicate diel samples. Replicates are also given specific codes. Grab samples in which duplicates sample are taken utilize a "1" for the first sample and a "2" for the second sample. Diel samples are always labeled with a "1" since only one sample is taken at each 2 hr intervals.

6) Data collection period

There were no grab samples or diel samples taken during the month of January 2002. The NERR SWMP Nutrient Monitoring Program was initiated in the year 2002. The JCNERR program was in the process of ordering supplies, receiving equipment, and setting up a lab for nutrient collection and processing during the month of January and was therefore unable to take nutrient samples.

No diel samples were taken during the time period of January 2002-April 2002. The JCNERR program had just begun the NERR SWMP Nutrient Monitoring Program in the year of 2002. The JCNERR program did not have the proper equipment (ISCO 6712 Portable Water Sampler) for diel sampling until the month of May 2002 which was when monthly diel sampling was initiated for JCNERR.

Note: there are no differences in sampling times between sites. The exact time of sample collection for each site was not recorded. The time reported below is low tide. The sample collection was made +/- 1 hour low tide. Please note for the 2003 nutrient sampling the exact time of sample collection will be recorded.

• Monthly Grab Sampling

```
Site Start Date Time End Time
    02/07/2002 1130 1130
В6
    03/28/2002 1440 1440
В6
    04/25/2002 1430 1430
В6
    05/20/2002 1030 1030
В6
    06/17/2002 0900 0900
В6
В6
    07/17/2002 0930 0930
B6 08/15/2002 0900 0900
    09/13/2002 0830 0830
В6
```

```
10/29/2002 0800
В6
     11/13/2002 1000
В6
                       1000
В6
      12/13/2002 1020
                       1020
      02/07/2002
                 1130
                        1130
В9
В9
      03/28/2002 1440
                       1440
      04/25/2002 1430
В9
                       1430
В9
      05/20/2002
                1030
                       1030
В9
      06/17/2002 0900
                       0900
В9
      07/17/2002 0930
                       0930
В9
      08/15/2002
                 0900
                       0900
В9
      09/13/2002
                 0830
                       0830
     10/29/2002 0800
В9
                       0800
В9
     11/13/2002
                 1000
                       1000
В9
     12/13/2002
                 1020
                       1020
В5
     02/07/2002
                 1130
                       1130
В5
      03/28/2002
                1440
                       1440
В5
      04/25/2002 1430
                       1430
В5
      05/20/2002 1030
                       1030
В5
      06/17/2002 0900
                       0900
      07/17/2002 0930
                        0930
В5
В5
      08/15/2002 0900
                        0900
В5
      09/13/2002 0830
                       0830
В5
      10/29/2002 0800 0800
                 1000
В5
      11/13/2002
                       1000
                 1020
В5
      12/13/2002
                       1020
      02/07/2002
                 1130
                       1130
ΝE
                 1440
ΝE
      03/28/2002
                       1440
      04/25/2002 1430
ΝE
                       1430
NE
      05/20/2002
                1030
                       1030
      06/17/2002 0900
ΝE
                       0900
ΝE
      07/17/2002 0930
                        0930
NE
      08/15/2002 0900
                        0900
      09/13/2002 0830
ΝE
                        0830
NE
      10/29/2002 0800
                        0800
     11/13/2002 1000
NE
                       1000
      12/13/2002 1020
                       1020
NE
      02/07/2002 1130 1130
BA
                1440
ВΑ
      03/28/2002
                       1440
                1430
ВΑ
      04/25/2002
                       1430
      05/20/2002
                 1030
                       1030
ΒA
      06/17/2002
                 0900
                       0900
ΒA
      07/17/2002 0930
                        0930
ΒA
      08/15/2002 0900
                        0900
ΒA
ΒA
      09/13/2002 0830
                        0830
      10/29/2002 0800
ВΑ
                        0800
                1000
ВΑ
      11/13/2002
                        1000
ВΑ
      12/13/2002 1020
                       1020
• Diel Sampling
Site Start Date
                 Time
                       End Date
                                    End Time
В6
      05/22/2002
                 0900
                        05/23/2002
                                   0700
                 1000
                        06/20/2002
                                    0800
В6
      06/19/2002
                 0700
                       07/24/2002
В6
      07/23/2002
                                   0500
В6
      08/28/2002
                 0800
                       08/29/2002
                                   0600
В6
     09/17/2002 0800
                       09/18/2002
В6
     10/30/2002 0800 10/31/2002
                                   0600
```

11/17/2002 0800 11/18/2002 0600

В6

Note: Time is coded based on a 2400 hour clock and is referenced to Eastern Standard Time (EST).

7) Associated researchers and projects

Graduate student, Amanda Flynn, is conducting research on the distribution and flux of riverine dissolved organic carbon, nitrogen and phosphorus within the Mullica River-Great Bay estuarine system.

8) Distribution

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Section 1. Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in text tab-delimited format, Microsoft Excel spreadsheet format and comma-delimited format.

II. Physical Structure Descriptors

9) Entry verification

Monthly nutrient and plant pigment data files, in excel format, are sent to JNEERR by the Rutgers University, IMCS, Ecosystems Lab. Files consist of sampling station ID, date and time and parameter values expressed in unit concentrations. The Laboratory Supervisor, Ron Lauck, verifies all parameter values in the excel file through cross comparison with the laboratory data sheets. The data are reviewed for values that appear erroneous or illogical. Any samples found to have questionable results are reanalyzed. JNEERR staff, Amanda McGuirck Flynn, then reviews the data files for missing data denoted by " " and comment coded "M". Values below the detection limit (MDL) are replaced with the MDL value itself and comment coded with a "B".

10) Parameter Titles and Variable Names by Data Category Required NOAA/NERRS System-wide Monitoring Program water quality parameters are denoted by an asterisks "*".

Data Category Parameter V	ariable Name	Units of Measure
Phosphorus and Nitrogen:	PO4F NO23F NO2F NO3F NH4F DIN	mg/L as P mg/L as N
Plant Pigments:	CHLA N	uq/L

Notes:

- 1. Time is coded based on a 2400 hour clock and is referenced to Eastern Standard Time (EST).
- 2. Reserves have the option of measuring either NO23 or NO2 or NO3.

11) Measured and Calculated Laboratory Parameters

a) Variables Measured Directly

Nitrogen species: NO2F, NO23F, NH4F

Phosphorus species: PO4F Other: CHLA

b) Computed Variables

NO3: NO23F-NO2F DIN: NO23F+NH4F

12) Limits of Detection

Method Detection Limits (MDL), the lowest concentration of a parameter that an analytical procedure can reliably detect, have been established by the Rutgers University, IMCS, Ecosystems Laboratory. The MDL is determined as 3 times the standard deviation of a minimum of 7 replicates of a single low concentration sample. Table 1 presents the current MDL's; these values are reviewed and revised periodically. Methods are from Lachat Instruments QuikChem methods.

Table 1.	Method	Detect:	ion Limits	(MDL)	for m	neasured w	water	quality	paramet	ters.
Parameter	Varia	ble	Method		MDI	L mg/L as	N or	P	Dates in	n use
Ammonium		NH4F	31-	07-06-1	L-A	0.001			Feb-Dec	2002
Nitrate		NO3F	31-	107-04-	-1-A	0.000	7		Feb-Dec	2002
Nitrite		NO2F	30-	107-04-	-1-A	0.000	6		Feb-Dec	2002
Nitrate/Ni	itrite	NO23F	30-	107-04-	-1-A	0.01			Feb-Dec	2002
Orthophosp	phate	PO4F	31-	115-01-	-3-A	0.001			Feb-Dec	2002
Chlorophyl	ll a	CHLA	EPA	445.0		0.01	(ug/l))	Mar-Dec	2002

13) Laboratory Methods

i) Parameter: PO4F

Rutgers University, IMCS, Ecosystems Lab Laboratory Method Method Reference: Lachat Instruments, 1993. QuikChem Method 31-115-

01-3-A.

Method Descriptor: Samples were filtered with a 0.45 ?m membrane filter and subjected to ammonium molybdate and antimony potassium

tartate under acidic conditions to form a complex. The complex is reduced with ascorbic acid to form a blue complex that absorbs light at $880\ \mathrm{nm}$.

Preservation Method: Stored in dark at -20 ?C for up to 30 days.

ii) Parameter: NO23F

Rutgers University, IMCS, Ecosystems Lab Laboratory Method Method Reference: Lachat Instruments, 1992. QuikChem Method 30-107-04-1-A.

Method Descriptor: Samples were filtered with a $0.45\ {
m ?m}$ membrane filter. Nitrate is

 $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

 $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

under acidic conditions to form a diazonium ion. The diazonium ion is coupled with $\mbox{N-}$

(1-naphthyl) ethylenediamine dihydrochloride, which results in a pink dye that absorbs

at 520 nm.

Preservation Method: Stored in dark at -20 ?C for up to 14 days.

iii) Parameter: NO2F

Rutgers University, IMCS, Ecosystems Lab Laboratory Method Method Reference: Lachat Instruments, 1992. QuikChem Method 30-107-04-1-A.

 $\,$ Method Descriptor: Samples were filtered with a 0.45 ?m membrane filter. Nitrite is

determined by diazotizing with sulfanilamide followed by coupling with N-(1- $\,$

 $\verb|naphthyl|| ethylenediamine dihydrochloride, which results in a pink dye \\ \\ that absorbs at$

520 nm.

Preservation Method: Stored in dark at -20 ?C for up to 14 days.

iv) Parameter: NO3F

Rutgers University, IMCS, Ecosystems Lab Laboratory Method Method Reference: Lachat Instruments, 1993. QuikChem Method 31-107-04-1-A.

Method Descriptor: Samples were filtered with a $0.45\ \mbox{?m}$ membrane filter. Nitrate is

reduced to nitrite by passage of sample through a copperized cadmium column. The $\,$

 $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

 $$\operatorname{under}$$ acidic conditions to form a diazonium ion. The diazonium ion is coupled with

 $\mbox{N-(1-naphthyl)}\,\mbox{ethylenediamine dihydrochloride, which results in a pink dye that$

absorbs at $520\ \mathrm{nm}$. Nitrate concentrations are determined by subtracting nitrite values

from nitrate plus nitrite values.

Preservation Method: Stored in dark at -20 ?C for up to 14 days.

v) Parameter: NH4F

Rutgers University, IMCS, Ecosystems Lab Laboratory Method

Method Reference: Lachat Instruments, 1993. QuikChem Method 31-107-06-1-A.

 $$\operatorname{Method}$ Descriptor: Samples were filtered with a 0.45 ?m membrane filter. The

method used is based on the Berthelot reaction. Samples are subjected to hypochlorite-

 $\,$ phenol, which results in indophenol blue. The indophenol blue is measured at 630 nm $\,$

and is proportional to the ammonium concentration. Preservation Method: Stored in dark at -20 ?C for up to 3 days.

vi) Parameter: DIN

Rutgers University, IMCS, Ecosystems Lab Laboratory Method Method Reference: N/A

 $\label{eq:method_Descriptor:} \ \, \text{Dissolved inorganic nitrogen is calculated by adding the}$

 $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

nitrate plus nitrite concentrations are determined as stated above. Preservation Method: N/A

vii) Parameter: CHLA

Rutgers University, IMCS, Ecosystems Lab Laboratory Method Method Reference: US.EPA 1997. Method 445.0

Method Descriptor: Samples with a known volume were filtered with a

0.45 ?m

membrane filter. Samples were dissolved in 5 ml 90% acetone/ 10% MgCO3 solution.

Fluorescence determined using a Shimadzu RF-1501 spectrofluorometer. Preservation Method: Filter is drawn dry, removed, placed in a glass tube with a

 $\,$ phenolic screw cap, wrapped in aluminum foil and stored at -20 ?C for up to 30 days.

14) Reporting of Missing Data and Data with Concentrations Lower than Method Detection Limits.

Nutrient/Chla comment codes and definitions are provided in the following table. Missing data are denoted by a blank cell " " and commented coded with an "M". Laboratories in the NERRS System submit data that are censored at a lower detection rate limit, called the Method Detection Limit or MDL. MDL's for specific parameters are listed in the Laboratory Methods and Detection Limits Section (Section II, Part 14) of this document. Measured concentrations that are less than this limit are replaced with the minimum detection limit value and comment coded with a "B" in the variable code comment column. For example, the measured concentration of NO23F was 0.0005 mg/L as N (MDL=0.0008), the reported value would be 0.0008 with a "B" placed in the NO23F comment code column. Calculated parameters are comment coded with a "C" and if any of the components used in the calculation are below the MDL, the calculated value is removed and also comment coded with a "B". If a calculated value is negative, the value is removed and comment coded with an "N".

Note: The way below MDL values are handled in the NERRS SWMP dataset was changed in November of 2011. Previously, below MDL data from 2002-2006 were also coded with a B, but replaced with -9999 place holders. Any 2002-2006 nutrient/pigment

data downloaded from the CDMO prior to December November of 2011 will contain - 9999s representing below MDL concentrations.

Comment	Definition
Code	
А	Value above upper limit of method detection
В	Value below method detection limit
С	Calculated value
D	Data deleted or calculated value could not be
	determined due to deleted data, see metadata for
	details
Н	Sample held beyond specified holding time
K	Check metadata for further details
М	Data missing, sample never collected or calculated
	value could not be determined due to missing data
Р	Significant precipitation (reserve defined, see
	metadata for further details)
U	Lab analysis from unpreserved sample
S	Data suspect, see metadata for further details

Reporting of Missing Data

CHLA

February 2002: Samples not taken.

March 28, 2002: B9 (Rep 1), B9(Rep 2), NE (Rep 2) sample vials broken.

April 25, 2002: B5 (Rep 1), BA (Rep 2) sample vials broken.

July 17, 2002: B5(Rep 1) sample vial broken.

NH4

February 7, 2002: NE(Rep 2) data not reported by Rutgers University, IMCS, Ecosystems Lab, sample vial missing.

NO2

March 28, 2002: B6(Rep 1) data not reported by Rutgers University, IMCS, Ecosystems Lab, sample vial missing.

July 17, 2002: BA(Rep 1) data not reported by Rutgers University, IMCS, Ecosystems Lab, sample vial missing.

August 15, 2002 to December 18, 2002: Nitrite was found to be a minor component relative to nitrate. Nitrate + nitrite was then substituted for individual analysis of nitrite and nitrate per NERRS SWMP nutrient sampling guidelines.

NO3

March 28, 2002: B6(Rep1) not able to calculate value due to incomplete data. July 17, 2002: BA(Rep 1) not able to calculate value due to incomplete data. August 15, 2002 to December 18, 2002: Nitrite was found to be a minor component relative to nitrate. Nitrate + nitrite was then substituted for individual analysis of nitrite and nitrate per NERRS SWMP nutrient sampling guidelines.

NO23

November 13, 2002: B5(Rep 2), NE(Rep 1), NE(Rep 2) data not reported by Rutgers University, IMCS, Ecosystems Lab, sample vial missing.

DIN

February 7, 2002: NE(Rep 2) not able to calculate due to incomplete data. March 28, 2002: B6(Rep 1) not able to calculate value due to incomplete data.

November 13, 2002: $B5(Rep\ 2)$, $NE(Rep\ 1)$, $NE(Rep\ 2)$ not able to calculate due to incomplete data.

PO4

March 28, 2002: B6(Rep 1) data not reported by Rutgers University, IMCS, Ecosystems Lab, sample vial missing.

November 13, 2002: B5(Rep 2), NE(Rep 1), NE(Rep 2) data not reported by Rutgers University, IMCS, Ecosystems Lab, sample vial missing.

- 15) QA/QC Programs
- a) Precision
- i) Field Variability

JNEERR collects two successive grab samples for the monthly grab sample program.

ii) Laboratory Variability

Rutgers University, IMCS, Ecosystems Lab analyzes a laboratory duplicate once for every nine samples.

- iii) Inter-organizational splits
 None
- b) Accuracy
- i) Sample Spikes

Rutgers University, IMCS, Ecosystems Lab analyzes a matrix spike once for every ten samples.

- ii) Standard Reference Material Analysis None
- iii) Cross Calibration Exercises
 None
- 16) Other Remarks

On 05/22/2025 this dataset was updated to include embedded QAQC flags and codes for anomalous/suspect, rejected, missing, and below detection limit data. System-wide monitoring data beginning in 2007 were processed to allow for QAQC flags and codes to be embedded in the data files rather than using the original single letter codes used for the nutrient and pigment dataset along with the detailed sections in the metadata document for suspect, missing, and rejected data. Please note that prior to 2007, rejected data were deleted from the dataset so they are unavailable to be used at all. Suspect, missing, rejected and below minimum detection flags and appropriate three letter codes were embedded retroactively for dataset consistency. The QAQC flag/codes corresponding to the original letter codes are detailed below.

		Historic	
Flag/code	If also C	Letter Code	Historic Code Definition
<1>[SUL]		Α	Value above upper limit of method detection
<-4>[SBL]	<-4>[SCB]	В	Value below method detection limit
no need to flag/code unless combined		С	Calculated value
<-3>[GQD]	<>[COR]	D	Data deleted or calculated value could not be determined due to deleted data, see metadata for details
<1>(OHB)		Н	Sample held beyond specified holding time
<0>(CSM) unless other flag		K	Check metadata for further details
<-2>[GDM]	<-2>[GOM]	М	Data missing, sample never collected or calculated value could not be determined due to missing data
<-3>[SNV] and <1>[SOC] for components		N	Negative calculated value
(CRE) or F_Record (CRE)		Р	Significant precipitation (reserve defined, see metadata for further details)
<0>(CUS)		U	Lab analysis from unpreserved sample
<1>(CSM)		S	Data suspect, see metadata for further details

Precipitation Events

Values taken from Mullica River/Jacques Cousteau NERR Nacote Creek. Data available only for October 2002-December 2002.

Month	Day	Precipitation (mm)
October	12	2.5
October	13	1.5
October	15	2.3
October	16	21.1
October	17	1.0
October	18	0.3
October	20	0.3
October	24	1.0
October	25	7.6
October	26	52.1
October	29	27.7
October	30	14.0
October	31	0.8
November	1	0.5
November	5	7.4
November	6	20.1
November	11	3.6
November	12	28.7
November	13	5.3
November	16	35.1
November	17	30.1
November	18	0.3
November	21	21.3
November	22	5.6
November	27	4.1
November	30	0.5
December	2	0.3
December	5	12.2
December	7	0.5
December	11	33
December	12	0.8
December	13	32.5
December	14	2.5
December	16	1.0
December	20	16
December	24	2.3
December	25	17.8