Jacques Cousteau(JAC) NERR Water Quality Metadata

1 January 2008 – 31 December 2008 Latest Update: 08 October 2020

I. Data set and Research Descriptors

1) Principal investigator & contact persons

Principal investigator:

Dr. Michael Kennish

Research Coordinator JCNERR

Institute of Marine & Coastal Sciences, Rutgers University

71 Dudley Road

New Brunswick, NJ 08901

Voice: (732) 932-6555 x240

Fax: (732) 932-1821

kennish@marine.rutgers.edu

Contact Person:

Gregg P. Sakowicz

Field Researcher/SWMP Technician

Jacques Cousteau National Estuarine Research Reserve (JCNERR)

Rutgers University Marine Field Station (RUMFS)

800 Great Bay Blvd.

C/o 132 Great Bay Blvd.

Tuckerton, NJ 08087

Voice: (609) 296-5260 x267

Fax: (609) 296-1024

sakowicz@marine.rutgers.edu

2) Entry verification

Deployment data are uploaded from the YSI data logger to a Personal Computer (IBM compatible). Files are exported from EcoWatch in a comma-delimited format (.CDF) and uploaded to the CDMO where they undergo automated primary QAQC; automated depth/level corrections for changes in barometric pressure (cDepth or cLevel parameters); and become part of the CDMO's online provisional database. All pre- and post-deployment data are removed from the file prior to upload. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the Reserve for secondary QAQC where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, remove any overlapping deployment data, append files,

and export the resulting data file for upload to the CDMO. Upload after secondary QAQC results in ingestion into the database as provisional plus data, recalculation of cDepth or cLevel parameters, and finally tertiary QAQC by the CDMO and assimilation into the CDMO's authoritative online database. Where deployment overlap occurs between files, the data produced by the newly calibrated sonde is generally accepted as being the most accurate. For more information on QAQC flags and codes, see Sections 11 and 12.

3) Research Objectives

The water quality of the Mullica River and Great Bay has traditionally been relatively clean and free of excessive nutrient loading from anthropogenic sources. This is due to the fact that there is very little development or industry within the drainage basin of the Mullica River and its tributaries. Great Bay had a large source of nutrient loading coming from a menhaden fish processing factory that was in operation from the early 1930's to the early 1960's and affected the lower portion of the bay. The river is relatively deep, three to nine meters in the section that is monitored. Great Bay averages about two meters in depth. The river also has a dark color due to tannins and humic compounds that are a natural product coming from the Pine Barrens and are present in large amounts within the river. It is believed that nutrients entering the river upstream do not get utilized within the river because of the lack of light penetration. The great depth of the river and the dark color from the tannins flowing down the river from the Pine Barrens hinders the utilization of these nutrients by planktonic organisms. Where the river empties into the bay, light penetration reaches the bottom of the bay and allows the utilization of the nutrients by phytoplankton, making this region more productive (Durand 1979). Water circulation questions within this unique estuary can be addressed by the use of datasondes. Because of the close proximity of the lower station (site name: B6) to Little Egg Inlet, the effects of an influx of ocean water can have dramatic effects on both the water quality and on the biological aspect of the region. Upwelling along the coast is a common occurrence during the summer months. The influx of this water into the bay can and does affect larval fish transport into and out of the bay. The cooler ocean waters can have dramatic effects on the growth rates of many different species living in the area. Datasondes have been useful in tracking the physical changes within the estuary due to occurrences such as upwelling and storm events and will be helpful in translating the resulting biological events.

4) Research Methods

The YSI datasondes (a.k.a. "dataloggers") are programmed to record temperature, specific conductance, salinity, dissolved oxygen, depth, pH, and turbidity every 15 minutes. Presently, four SWMP monitoring stations are established in the Mullica River/Great Bay Reserve. These monitoring sites extend from the fresh water/salt water interface at Lower Bank, approximately 25 kilometers up the Mullica River from the point where it joins Great Bay to the mouth of Great Bay, a distance of eight kilometers. Thus the datasondes cover a total of 33 kilometers in this estuarine system.

Calibration standards required for pH were purchased from Y.S.I. (p/n 003822 (pH 7) and 003823(pH 10)). A two-point calibration was employed for pH, the first being pH 7 followed by pH 10. Calibration of the pH probe was performed via immersion in the standard and using the calibration feature of the EcoWatch software and accepting the reading after sixty seconds.

Calibration standards required for conductivity were purchased from Y.S.I.. A standard of 10 mS/cm (p/n 060911) was used to calibrate for conductivity. Calibration of the conductivity probe was performed via immersion in the standard and using the calibration feature of the EcoWatch software and accepting the reading after sixty seconds.

Dissolved oxygen was calibrated via immersion in a bucket of oxygen-saturated tap water and utilizing the dissolved oxygen calibration function of the datasonde(s). Oxygenation of the water was accomplished via aeration with an aquarium pump and air-stone for a minimum of 2 hours to saturate tap water prior to calibration. Prior to calibration, the membrane was "burned in" by allowing the datasonde to run in discrete mode for a minimum of 10 minutes to assess its suitability and stability. The sensor was then allowed to "rest" overnight prior to calibration. Calibration of the dissolved oxygen probe was performed via immersion in the aerated water and using the calibration feature of the EcoWatch software and accepting the reading after sixty seconds. The membrane on the oxygen probe was changed prior to every deployment. Installation of the D.O. membrane was as follows: the datasonde was inverted (probes facing upwards) and the reservoir of the DO probe was filled with the appropriate solution, allowing a meniscus bubble to form over the DO terminals. The DO membrane was then stretched over the face of the probe and secured using a rubber O-ring. The membrane was inspected for folds or trapped bubbles.

Calibration of the turbidity probe was performed with a 0 NTU (Nephelometric Turbidity Units) solution (de-ionized water) and a 123 NTU standard (supplied by YSI, inc., p/n 607300) in the longer version of the datasonde cup/cap (YSI p/n 116275). Calibration of the Turbidty probe was performed via immersion in each standard and using the calibration feature of the EcoWatch software and accepting the reading when stable.

Used conductivity and pH standards were stored for rinsing probes and performing post-deployment calibrations after retrieval and prior to cleaning loggers. Great care was taken to clean the datasondes before calibration, and each used standard was used once as a post-calibration solution and once as a rinse solution before being discarded (unless egregious contamination was suspected).

Datasondes were deployed by inserting them in PVC pipes that are affixed to a permanent structure (i.e. two US Coast Guard channel markers (Buoy 126 and Buoy 139), one commercial dock (Chestnut Neck), and one bridge (Lower Bank). The bottoms of the PVC pipes were situated approximately 1m above the sediment. A line was used to lower and recover the datasondes within the pipes. A cross-pin (stainless steel bolt)

was inserted across the bottom of the pipe and served as an end-stop for the datasonde during its descent, assuring a maximum fixed depth and retaining the datasonde if the line parted. Two-inch vent holes or two- by ten-inch-wide slots were drilled or cut in the bottom of the pipe to allow for circulation of water across the probes. An antifouling paint (Petit Trinidad SLR) was used to coat the last few meters of the PVC pipes, both inside and out, to retard biofouling and subsequent blockage of the holes/vents. A locking cap provided security.

In 2008, two methods of deployment and data collection were employed. The first being a stand-alone deployment during which a datasonde autonomously collected data on 15-minute intervals on Eastern Standard Time (EST) and record these data internally, to later be downloaded onto a desktop/laptop computer post-retrieval. This method was employed at stations Buoy 139 (B9) and Lower Bank (BA). The second method employed was the pairing of datasondes with telemetry equipment that received data from the datasondes and broadcast it to the GOES satellite for receipt by the NOAA Hydrometeorological Automated Data System (HADS). These data were also recorded independently every 15 minutes in Eastern Standard Time (EST) by the datasondes for redundancy and to continue with the pre-existing NERRS SOP. Telemetry was employed at Buoy 126 (B6) and Chestnut Neck (NE) in 2007. For more detail concerning these telemetered datasonde stations, see below:

A Sutron Sat-Link2 transmitter was installed at this Buoy 126 (B6) on 06/22/06 and transmits data to the NOAA GOES satellite, NESDIS ID #3B00C264. The transmissions are scheduled hourly and contain four (4) datasets reflecting fifteen minute data sampling intervals. The telemetry data are "Provisional" data and not the "Authentic" dataset used for long term monitoring and study. These data can be viewed by accessing http://cdmo.baruch.sc.edu

A Sutron Sat-Link2 transmitter was installed at Chestnut Neck (NE) on 09/19/06 and transmits data to the NOAA GOES satellite, NESDIS ID #3B03E386. The transmissions are scheduled hourly and contain four (4) datasets reflecting fifteen minute data sampling intervals. The telemetry data are "Provisional" data and not the "Authentic" dataset used for long term monitoring and study. These data can be viewed by accessing http://cdmo.baruch.sc.edu

During each sampling period, measurements of specific conductance, salinity, temperature, dissolved oxygen, (percent saturation and concentration measured in mg/L), water level (depth), pH, and turbidity were recorded. After approximately 30 days datasondes were retrieved from the PVC pipe. Deployment periods were occasionally extended during 2007 because of weather restrictions. A YSI 600 datasonde attached to a YSI 650-MDS "handheld unit" was then lowered to depth in order to sample in-situ water conditions at approximately the same depth at which data was recorded. A different calibrated and programmed YSI datasonde was then deployed to replace the datasonde being recovered. The recovered datasonde was brought back to the laboratory for downloading, post-deployment calibration checking, cleaning, and re-calibration. For some retrievals (due to one of our three 6600 datasondes being out for repairs or our

desire to keep the same datasonde at the same SWMP site for consistency), the datasonde was not replaced but rather brought back to the field station, processed as described above, and re-deployed or replaced later that day or the following day.

Upon retrieval, datasondes were wrapped in a white towel and placed in a cooler for transport back to the laboratory. Datasondes were then placed in an aerated bucket of tap water overnight before post-processing according to SWMP standard operating procedures. Post-processing involves the placing of the un-cleaned datasonde in standards and recording of the displayed values, to judge how well the probes maintained calibration, determine the effect of bio-fouling (if any), and judge whether probe failure occurred during the deployment. After this post-deployment calibration check, probes were cleaned as per SWMP standard operating procedures and either re-calibrated for the next deployment or capped for storage for later calibration and deployment.

Datasondes were programmed to start recording data (ranging from one sample period to a few hours) before they were deployed in the field and allowed to run in either a wet, enclosed environment or an aerated water-filled bucket, so these deployment files often contained "tail ends" of non-deployment ("out-of-water event") data, which were used to diagnose the probes but deleted before the data were processed for import into the yearly datasets. The beginning and end of each data file was compared to the 600/650MDS handheld unit values and the data were checked for probe failure and fouling.

5) Site Location and Character

The Jacques Cousteau National Estuarine Research Reserve (JCNERR) at Mullica River/Great Bay is located on the northeast coast of the United States on the Atlantic Ocean. The estuary is near Tuckerton, New Jersey about 14 kilometers north of Atlantic City. There were four active sampling stations in 2008. All four locations can be characterized by having little macroalgae (few to no established beds in the immediate locale; only occasional seasonal and structurally-dependent fouling-type macroalgal communities), fast moving tidal currents, and tidal ranges of approximately 1m (although this can vary significantly depending on moon state, storm events, and coastal wind conditions (e.g.- "blow out tides" associated with strong offshore winds). All sites are in a relatively undisturbed area with minimal impact from development or pollution.

1) Buoy 126 (B6) - 39deg 30'28.44"N, 74 deg 20'18.67"W- located three kilometers from Little Egg Inlet on the eastern side of Great Bay and is 100 meters from the nearest land that is a natural marsh island. This is a naturally deep area that has never been dredged, but it is located about 0.5 kilometers from an area in the Intracoastal Waterway that is dredged regularly. The datasonde at this location is attached to Intracoastal Waterway Buoy 126 and is the closest monitoring station to Little Egg Inlet. This site can be characterized by having strong tidal currents, 2-3 knots, fine to course sand bottom with an extensive blue mussel bed surrounding the area. Groundwater inputs from margins of the estuary as well as surface flow from Mullica River account for the majority of freshwater coming into the system at this site, followed by input from rainwater from the marsh surface. In 2008, the reported salinity at this station ranged from 16.5ppt to

- 33.4ppt, with an average of 28.4ppt. It is important to note that fouling may have occasionally depressed some salinity readings and are "flagged" as such in the dataset, so the aforementioned average and range may not be accurate. Presuming the datasondes were measuring 1m above the sediment as intended, the average depth at the B6 station was 3.91m, with a range of 2.72 to 5.09m.
- 2) Buoy 139 (B9) 39deg 29'24.65"N, 74 deg 22'53.83"W- is located 4 kilometers from Buoy 126 on the western side of Great Bay and is located about one to one and one-half kilometers from land. The datasonde at this location is attached to Intracoastal Waterway Buoy 139. The closest landform is an extensive salt marsh approximately 1.5 kilometers wide, which borders the upland area. This area is dredged by the U.S. Army Corp of Engineers approximately every five to six years to maintain the channel at a depth of approximately 2.5 meters. The surrounding depth of the bay is approximately 1.5 to 2 meters. This site is characterized by having maximum currents of about 1.5 knots with a muddy sand bottom and with little structure or shell. Groundwater inputs from margins of the estuary as well as surface flow from Mullica River account for the majority of freshwater coming into the system at this site, followed by input from rainwater from the marsh surface and above. In 2008, the reported salinity at this station ranged from 18.2ppt to 32.9ppt, with an average of 27.9ppt. Presuming the datasondes were measuring 1m above the sediment as intended, and omitting some suspect depth measurements recorded by the instrument (and "flagged" accordingly in the B9 dataset), the average depth at the B9 station was 3.18m, with a range of 2.13 to 4.55m.
- 3) Chestnut Neck (NE) 39deg 32'52.37"N, 74deg 27'38.77"W located 12 kilometers up the Mullica River from the mouth of the river. The river begins at a line drawn between Graveling Point and Oysterbed Point on the northwestern side of Great Bay. The Mullica River at this location is quite wide, about 250 meters. The datasonde is attached to the dock of a small marina along the southern shore of the river adjacent to the main channel. This location has never been dredged. The site is characterized by having tidal currents of less then one knot, during both ebb and flood tide, and has a mixed organic mud/sand bottom. Freshwater input is primarily from groundwater and watershed runoff. In 2008, the reported salinity at this station ranged from 1.3ppt to 25.1ppt, with an average of 15.5ppt. Presuming the datasondes were measuring 1m above the sediment as intended, and omitting some suspect depth measurements recorded by the instrument (and "flagged" accordingly in the NE dataset), the average depth at the NE station was 2.32m, with a range of 1.11 to 3.45m.
- 4) Lower Bank (BA) 39deg 35'37.18"N, 74 deg 33'05.44"W- located 13 kilometers upriver of the Chestnut Neck location. The Mullica River at this site is about two hundred meters wide. The datasonde is located at the center of a bridge spanning the Mullica River. The northern bank of the river is sparsely developed with single-family houses and has a steep bank about five meters high. The southern shore has an extensive marsh and fresh water wetland area about three kilometers wide. This site can be characterized by having fast tidal currents, just over one knot, deep water, and fine mixed organic mud and sandy sediment. Freshwater input is primarily from groundwater and watershed runoff. In 2008, the reported salinity at this station ranged from 0.0ppt to

17.7ppt, with an average of 3.7ppt. Presuming the datasondes were measuring 1m above the sediment as intended, and omitting some suspect depth measurements recorded by the instrument (and "flagged" accordingly in the BA dataset), the average depth at the BA station was 2.77m, with a range of 1.43 to 3.98m.

6) Data Collection Period

Site	Filename	Deploy Date	Time	Retrieve Date	Time
В6	B6121807	12/18/07	14:00	02/12/08	15:30
B6	B6021208	02/12/08	15:45	03/18/08	13:30
В6	B6031808	03/18/08	14:00	04/16/08	14:30
В6	B6041608	04/16/08	14:45	05/21/08	09:45
В6	B6052208	05/22/08	11:15	06/23/08	10:00
В6	B6062408	06/24/08	10:45	07/27/08	23:00
В6	B6073008	07/30/08	13:45	09/02/08	13:00
B6	B6090308	09/03/08	13:15	10/13/08	13:00
B6	B6101408	10/14/08	11:00	11/14/08	11:00
B6	B6111408	11/14/08	15:30	12/16/08	11:45
B6	B6121608	12/16/08	12:00	01/12/09	11:30
В9	B9121107	12/17/07	14:45	01/31/08	13:45
B9	B9013108	01/31/08	14:00	02/25/08	14:00
B9	B9022508	02/25/08	14:30	03/30/08	02:45
B9	B9040308	04/03/08	10:15	05/14/08	14:45
B9	B9051508	05/15/08	08:45	06/17/08	13:00
B9	B9061808	06/18/08	12:15	07/28/08	13:45
B9	B9072908	07/29/08	14:00	08/25/08	09:15
B9	B9082608	08/27/08	10:30	09/29/08	13:45
B9	B9093008	09/30/08	06:45	11/11/08	11:00
B9	B9111208	11/12/08	11:15	12/18/08	13:00
В9	B9121808	12/18/08	13:30	01/12/09	14:00
NE	NE121207	12/12/07	11:30	01/11/08	13:30
NE	NE011108	01/11/08	13:45	02/13/08	13:15
NE	NE021308	02/13/08	13:45	03/11/08	11:00
NE	NE031208	03/12/08	14:30	04/08/08	10:30
NE	NE040808	04/08/08	11:00	05/08/08	13:15
NE	NE050908*	05/09/08	14:15	06/10/08	09:45
NE	NE061108*	06/11/08	10:30	07/01/08	08:30
NE	NE070208*	07/02/08	11:30	07/29/08	13:30
NE	NE072908*	07/29/08	13:45	08/06/08	09:45
NE	NE080608*	08/06/08	10:00	09/08/08	08:30
NE	NE090808*	09/09/08	08:45	10/06/08	08:30
NE	NE100608*	10/07/08	09:15	11/05/08	09:45

NE	NE110608*	11/06/08	11:45	12/10/08	15:00
NE	NE121008	12/10/08	15:15	01/08/09	12:45
BA	BA120407	12/04/07	14:30	01/08/09	14:45
BA	BA010808	01/08/08	15:15	02/06/08	11:30
BA	BA020608	02/06/08	11:45	03/04/08	12:00
BA	BA030408	03/04/08	12:30	04/01/08	11:00
BA	BA040108	04/01/08	11:15	05/01/08	12:45
BA	BA050108*	05/01/08	13:00	05/29/08	12:45
BA	BA052908	05/29/08	13:00	07/01/08	08:00
BA	BA070108	07/01/08	14:00	07/30/08	08:45
BA	BA073008	07/30/08	14:45	09/02/08	08:30
BA	BA090208	09/02/08	14:45	09/29/08	09:00
BA	BA092908	09/30/08	09:30	10/28/08	10:00
BA	BA102808	10/28/08	10:30	10/30/08	11:30
BA	BA103008	10/30/08	12:00	12/03/08	12:45
BA	BA120308	12/03/08	13:15	01/06/08	13:00

^{* -} Denotes the use of a non-vented sonde at a vented site

7) Distribution

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in text tab-delimited format.

8) Associated Researchers and Projects

During 2008, weekly ichthyoplankton sampling at Little Sheepshead Creek Bridge (LSCB) continued as part of the long-term sampling conducted by the Rutgers University Marine Field Station (RUMFS) in the Jacques Cousteau National Estuarine Research Reserve (JCNERR). Presence and abundance of larval fishes are determined with a plankton net (1 m, 1 mm mesh) deployed during night flood tides from a bridge near Little Egg Inlet (New Jersey) in the Great Bay/Little Egg harbor portion of the JCNERR.

RUMFS conducted an annual trawl survey at numerous sites from offshore of Little Egg Inlet to the freshwater interface up the Mullica River. SWMP data will be used in the analysis of community composition and species assemblage.

A wire-mesh trapping survey of fish and crustaceans conducted by RUMFS within the RUMFS boat basin also continued in 2008 as part of long-term sampling within the Reserve.

Rutgers University researchers (Robert Chant et al) utilized data from the Chestnut Neck (NE) station to groundtruth data from an ADCP unit deployed nearby as part of a New Jersey Department of Transportion (NJDOT) study concerning repair and construction at the Garden State Parkway bridge approximately ½ km upriver.

Drs. Kenneth W. Able and Thomas Grotheus from the Rutgers University Marine Field Station (RUMFS) are studying species distributions, daily movements, and seasonal migration patterns of striped bass (*Morone saxatilis*) using surgically implanted hydroacoustic transmitters and an array of buoy-mounted receivers. The study area includes the Mullica River/Great Bay estuary, the southern end of Barneget Bay, and the coastal ocean outside of Little Egg Inlet off Tuckerton, New Jersey. Dr. Thomas Grotheus is using the 2008 SWMP water quality data extensively in his multivariate statistical analyses. Visit www.stripertracker.org for more information.

Jason Turnure, the JCNERR's Graduate Research Fellow, will be utilizing 2007 and 2008 SWMP data in his analyses of movements of telemetered weakfish (*Cynoscion regalis*)

Other projects orchestrated in the year 2008 in the JCNERR include the continuation of a biofouling project that was initiated in 2003. Conducted by the Research Coordinator and JCNERR staff, several biofouling panels constructed of PVC plates were secured to cages and placed on the bottom. Many of these panels were deployed near SWMP stations. One set of panels was retrieved per month from June through the end of October and were processed for species content after the samples were preserved.

II. Physical Structure Descriptors

9) Sensor Specifications

YSI 6600EDS datasonde

Parameter: Temperature Units: Celsius (C)

Sensor Type: Thermistor

Model #: 6560 Range: -5 to 45 °C Accuracy: +/-0.15 °C Resolution: 0.01 °C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: 4-electrode cell with autoranging

Model #: 6560

Range: 0 to 100 mS/cm

Accuracy: $\pm -0.5\%$ of reading ± 0.001 mS/cm

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependent)

Parameter: Salinity

Units: parts per thousand (ppt)

Sensor Type: Calculated from conductivity and temperature

Range: 0 to 70 ppt

Accuracy: +/- 1.0% of reading or 0.1 ppt, whichever is greater

Resolution: 0.01 ppt

Parameter: Dissolved Oxygen % saturation

Units: percent air saturation (%)

Sensor Type: Rapid Pulse – Clark type, polarographic

Model #: 6562

Range: 0 to 500 % air saturation

Accuracy: 0-200 % air saturation, +/- 2 % of the reading or 2 % air saturation, whichever

is greater; 200-500 % air saturation, +/- 6 % of the reading

Resolution: 0.1 % air saturation

Parameter: Dissolved Oxygen mg/L (Calculated from % air saturation, temperature and

salinity)

Units: milligrams per Liter (mg/L)

Sensor Type: Rapid Pulse – Clark type, polarographic

Model #: 6562

Range: 0 to 50 mg/L

Accuracy: 0 to 20 mg/L, +/- 2 % of the reading or 0.2 mg/L, whichever is greater; 20 to

50 mg/L, +/-6 % of the reading

Resolution: 0.01 mg/L

Parameter: Non-Vented Level – Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 30 ft (9.1 m)

Accuracy: +/- 0.06 ft (0.018 m) Resolution: 0.001 ft (0.001 m)

Parameter: Vented Level – Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 30 ft (9.1 m)

Accuracy 0-10 ft: +/- 0.01 ft (0.003 m) Accuracy 10-30 ft: +/- 0.06 ft (0.018 m)

Resolution: 0.001 ft (0.001 m)

Parameter: pH Units: units

Sensor Type: Glass combination electrode (glass "globe" type)

Model #: 6561 Range: 0 to 14 units Accuracy: +/- 0.2 units Resolution: 0.01 units

Parameter: pH Units: units

Sensor Type: Glass combination electrode (flat glass type)

Model #: 605091 Range: 0 to 14 units Accuracy: +/- 0.2 units Resolution: 0.01 units

Parameter: Turbidity

Units: nephelometric turbidity units (NTU)

Sensor Type: Optical, 90 ° scatter, with mechanical cleaning

Model #: 6136

Range: 0 to 1000 NTU

Accuracy: +/- 5 % reading or 2 NTU (whichever is greater)

Resolution: 0.1 NTU

Dissolved Oxygen Qualifier:

The reliability of the dissolved oxygen (DO) data after 96 hours post-deployment for non-EDS (Extended Deployment System) data sondes may be problematic due to fouling which forms on the DO probe membrane during some deployments (Wenner et al. 2001). Many reserves have upgraded to the YSI 6600 EDS data sondes, which increases DO accuracy and longevity by reducing the environmental effects of fouling. The user is therefore advised to consult the metadata and to exercise caution when utilizing the DO data beyond the initial 96-hour time period. However, this potential drift is not always problematic for some uses of the data, i.e. periodicity analysis. It should also be noted

that the amount of fouling is very site specific and that not all data are affected. The Research Coordinator at the specific NERR site should be contacted concerning the reliability of the DO data because of the site and seasonal variation in the fouling of the DO sensor.

Reserve-specific information regarding the Dissolved Oxygen Qualifier: in 2008, EDS sondes were used to monitor at all the SWMP stations, so the 96-hour qualifier above should be a non-issue (The exception to this rule were the NE072908 and BA050108 deployments during which a non-EDS datasonde was deployed due to EDS sondes being at YSI for repairs). However, it was occasionally observed that fouling within the sonde guard or protective mesh around the guard, or sediment collection within the sonde guard, became so extreme as to restrict or block water-flow, affecting DO measurements; associated data were "flagged" accordingly within their respective datasets.

Depth Qualifier:

The NERR System-Wide Monitoring Program utilizes YSI data sondes that can be equipped with either vented or non-vented depth/level sensors. Readings for both vented and non-vented sensors are automatically compensated for water density change due to variations in temperature and salinity; but for all non-vented depth measurements, changes in atmospheric pressure between calibrations appear as changes in water depth. The error is equal to approximately 1.03 cm for every 1 millibar change in atmospheric pressure, and is eliminated for vented sensors because they are vented to the atmosphere throughout the deployment time interval.

Beginning in 2006, NERR SWMP standard calibration protocol calls for all non-vented depth sensors to read 0 meters at a (local) barometric pressure of 1013.25 mb (760 mm/hg). To achieve this, each site calibrates their depth sensor with a depth offset number, which is calculated using the actual atmospheric pressure at the time of calibration and the equation provided in the SWMP calibration sheet or digital calibration log. This offset procedure standardizes each depth calibration for the entire NERR System. If accurate atmospheric pressure data are available, non-vented sensor depth measurements at any NERR can be correct

In 2010, the CDMO began automatically correcting depth/level data for changes in barometric pressure as measured by the Reserve's associated meteorological station during data ingestion. These corrected depth/level data are reported as cDepth and cLevel, and are assigned QAQC flags and codes based on QAQC protocols. Please see sections 11 and 12 for QAQC flag and code definitions.ed.

Reserve-specific information regarding the Depth Qualifier:

In 2008, the two "downriver stations" (B6 and B9) were monitored using non-vented YSI 6600EDS (Extended Deployment System) sondes with deployment periods of

approximately 30 days. The depth-offset was applied to calibrations at B6 and B9 throughout 2008. The two "upriver stations" (NE and BA) were, as internal standard operating procedure, monitored using vented-level YSI6600EDS sondes, making the depth-offset not applicable at either of these stations. However, occasional substitution with non-vented sondes were required at these stations. Affected deployments were: NE050908, NE061108, NE070208, NE072908, NE080608, NE090808, NE100608, NE110608, and BA050108.

10) Coded Variable Definitions

Sampling Station:	Sampling Site Code	Station Code	
Buoy 126	В6	jacb6wq	
Buoy 139	В9	jacb9wq	
Lower Bank	BA	jacbawq	
Chestnut Neck	NE	jacnewq	

jac = Jacques Cousteau National Estuarine Research Reserve

wq = water quality data

example 1: B6010408 = this demonstrates the naming convention for deployment files. This denotes a deployment at Buoy 126 starting on 01/04/08.

example 2: jacb6wq2008= water quality data from JCNERR's Buoy 126 station for the year 2008

11) QAQC flag definitions – This section details the automated and secondary QAQC flag definitions.

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is missing and above or below sensor range. All remaining data are then flagged 0, passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter

- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data
- **12) QAQC code definitions** This section details the secondary QAQC Code definitions used in combination with the flags above. Include the following excerpt:

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F Record column.

General Errors

OIO	3 T	•	1 1	1 1	
GIC	No	instrument	denior	red du	e to 10e
OIC	110	mou umem	ucbio,	vcu uu	

GIM Instrument malfunction

GIT Instrument recording error; recovered telemetry data
GMC No instrument deployed due to maintenance/calibration

GNF Deployment tube clogged / no flow

GOW Out of water event

GPF Power failure / low battery

GQR Data rejected due to QA/QC checks

GSM See metadata

Corrected Depth/Level Data Codes

GCC Calculated with data that were corrected during QA/QC GCM Calculated value could not be determined due to missing

data

GCR Calculated value could not be determined due to rejected data

GCS Calculated value suspect due to questionable data

GCU Calculated value could not be determined due to unavailable data

Sensor Errors

SBO Blocked optic

SCF Conductivity sensor failure

SDF Depth port frozen

SDG Suspect due to sensor diagnostics

```
SDO
           DO suspect
   SDP
           DO membrane puncture
           Incorrect calibration / contaminated standard
   SIC
   SNV
           Negative value
   SOW
           Sensor out of water
           Post calibration out of range
   SPC
           Data rejected due to QAQC checks
   SQR
   SSD
           Sensor drift
           Sensor malfunction
   SSM
   SSR
           Sensor removed / not deployed
   STF
           Catastrophic temperature sensor failure
           Turbidity spike
   STS
   SWM
           Wiper malfunction / loss
Comments
   CAB*
           Algal bloom
   CAF
           Acceptable calibration/accuracy error of sensor
   CAP
           Depth sensor in water, affected by atmospheric pressure
   CBF
           Biofouling
   CCU
           Cause unknown
   CDA*
           DO hypoxia (<3 mg/L)
           Disturbed bottom
   CDB*
   CDF
           Data appear to fit conditions
   CFK*
           Fish kill
   CIP*
           Surface ice present at sample station
   CLT*
           Low tide
   CMC*
           In field maintenance/cleaning
   CMD*
           Mud in probe guard
           New deployment begins
   CND
   CRE*
           Significant rain event
   CSM*
           See metadata
   CTS
           Turbidity spike
   CVT*
           Possible vandalism/tampering
```

13) Post-deployment information

CWE*

Deployment Datasonde ID#, Dissolved Oxygen #1, Dissolved Oxygen #2, depth measured/expected offset, Specific Conductivity, pH7, pH10, Turbidity0

```
B6121807 14, 73.4, 73.4, -0.129/-0.091, 2.93, 6.84, 9.58, 1.4
B6021208 13, 91.8, 91.2, -0.089/-0.091, 9.40, 7.15, 10.12, 1.7
```

CWD* Data collected at wrong depth

Significant weather event

```
11, 99.4, 99.5, 0.083//0.080, 9.87, 7.52, 10.72, 1.5
B6031808
B6041608
              14, 100.1, 98.5, -0.061/-0.141, 9.23, 7.10, 10.12, 13.5
B6052208
              14, 98.4, 98.0, 0.008/0.007, 10.23, 7.06, 10.02, 1.5
B6062408
              14, 97.2, 97.2, -0.014/-0.008, 8.62, 6.83, 9.70, NST
              14, 100.5, 97.3, 0.028/0.033, 9.19, 6.81, 9.83, NR
B6073008
              14, 98.5, 98.4, 0.110/0.117, 9.86, 7.12, 10.11, 0.2
B6090308
              14, 102.3, 100.4, 0.017/0.017, 9.88, 6.88, 10.12, 1.4
B6101408
B6111408
              14, 94.8, 92.1, 0.173,/0.190, 9.82, 6.74,9.78, 2.7
              11, 99.2, 99.4, 0.005/-0.001, 9.95, 6.97, 9.93, 5.9
B6121608
B9121107
              13, 87.7, 87.7, 0.013/0.014, 9.98, 6.94, 9.84, 0.3
              11, 95.0, 95.1, 0.05/0.063, 10.07, 6.91, 9.98, -0.5
B9013108
              14, 123.0, 104.8, 0.205/0.196, 9.97, 6.86, 9.98, 1.4
B9022508
B9040308
              13, 105.4, 105.9, 0.026/0.034, 9.82, 7.08, 10.26, 0.3
              13, NPC, NPC, NPC/NPC, NPC, NPC, NPC, NPC
B9051508
B9061808
              13, 98.6, 98.2, -0.020/-0.019, 9.80, 6.92, 9.90, -2.2
              13, 97.1, 97.0, -0.026/-0.026, 9.78, 6.90, 9.89, 0.1
B9072908
              13, 101.6, 102.1, 0.001/0.004, 9.18, 7.11, 10.09, 6.5
B9082608
B9093008
              13, 105.9, 105.4, 0.120/0.116, 10.20, 7.07, 10.00, 0.3
B9111208
              13, 82.6, 83.4, -0.016/-0.019, 10.17, 6.97, 9.88, 1.3
B9121808
              14, 90.7, 90.3, -0.015/-0.004, 9.87, 6.68, 9.74, 0.3
NE121207
              12, 117.7, 117.9, 0.001/0.000, 10.04, 7.02, 10.10, -0.1
              5, 102.3, NR, 0.001/0.000, 9.93, 7.11, 10.14, -0.3
NE011108
NE021308
              X, 103.9, 103.8, 0.252/0.000, 10.10, 7.26, 10.24, 1.4
              X, 107.4, 100.8, 0.081/0.000, 10.02, 7.01, 10.02, -3.1
NE031208
NE040808
              5, NPC, NPC, NPC, NPC, NPC, NPC, NPC
              11, 99.9, 101.7, 0.130/-0.003, 10.19, 6.82, 9.71, NR
NE050908
NE061108
              11, 105.9, 106.0, -0.008/-0.022, 10.04, 6.69, 9.60, 0.8
              11, 114.1, 112.7, -0.018/-0.019, 9.98, 6.63, 9.45, -2.1
NE070208
              NC, 97.2, 97.1, -0.170/0.000, 9.93, 7.17, 10.10, 1.2
NE072908
NE080608
              11, 105.2, 104.6, 0.088/0.078, 10.13, 6.81, 9.62, 0.8
NE090808
              11, 99.6, 100.1, 0.117/0.122, 10.00, 7.25, 10.27, 0.3
              11, 98.7, 98.7, 0.058/NR, 10.07, 7.23, 10.14, 0.8
NE100608
              11, 105.3, 104.7, -0.020/-0.024, 10.11, 6.92, 9.93, 2.8
NE110608
NE121008
              12, 102.0, 102.1, -0.007/0.000, 9.92, 7.26, 10.33, 2.6
BA120407
              5, 104.5, 104.5, -0.007/0.000, 10.07, 6.80, 9.84, -0.2
              5, 104.3, 104.2, -0.240/0.000, 9.93, NP, NP, 5.3
BA010808
              12, 101.5, NR, -0.003/0.000, 10.00, 7.02, 9.96, -0.4
BA020606
BA030408
              5, 105.0, 104.8, -0.004/0.000, 9.93, 7.09, 10.05, -0.5
BA040108
              12, 100.8, 100.7, -0.005/0.000, 10.06, 7.04, 10.02, -2.9
BA050108
              NC, -23.0, -23.0, -0.040/0.000, 10.01, 6.77, 9.73, -31.0
BA052908
              12, 113.8, NR, -0.004/0.000, 10.07, 6.87, 9.84, 3.5
BA070108
              12. 98.4, 97.8, 0.002/0.000, 9.96, 7.14, 10.06, 0.9
```

```
BA073008 12, 107.3, 108.2, 0.000/0.000, 10.02, 6.89, 9.87, 0.3
BA090208 12, 110.7, 110.2, 0.000/0.000, 9.93, 6.90, 9.96, 0.1
BA092908 12, 97.1, 97.1, -0.001/0.000, 9.97, 7.15, 10.28, 0.4
BA102808 5, 108.8, 108.5, -0.017/0.000, 9.86, 7.05, 10.28, -5.4
BA103008 12, 103.9, 103.9, -0.001/0.000, 10.06, 6.96, 9.94, 0.0
BA120308 5, 104.6, 104.4, -0.011/0.000, 9.87, 7.07, 10.04, 2.3
```

Deployment= deployment file name

#= datasonde ID number

D.O.% (1)= first datasonde output in a 100% Dissolved Oxygen-saturated environment D.O.% (2)= second datasonde output in a 100% Dissolved Oxygen-saturated environment

Depth displayed/expected offset = depth in meters (m) displayed by the datasonde when in a depth=0.000m environment. The offset reflects expected depth value, adjusted for local atmospheric pressure (applicable only to non-vented datasondes (#11, 13, 14, and the 600XLS-M unit); vented datasondes (#X, 5, and 12) have an expected offset = 0.000) SpCond= datasonde output in a 10 milliSiemens per centimeter cubed conductivity standard solution

pH7= datasonde output in a pH7 standard solution

pH10= datasonde output in a pH10 standard solution

Turbidity0= datasonde output in a 0 NTU turbidity standard (e.g.- Deionized water)

NR= Value not recoded for unspecified reason(s)

NR(PM)- No sample taken due to probe/sonde malfunction.

NPC= No post-calibration performed. Usually the reason for (not) doing so was: the datasonde malfunctioned (battery failure, Temperature probe failure, etc.) or otherwise stopped logging in the field during deployment making the post-calibration value irrelevant.

NP= no probe or probe deactivated during this deployment

14) Other Remarks/Notes

This section details comments concerning data in the data set that are not adequately described by the coding convention or require additional comment/qualification.

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

There were a few instances at this NERR site where negative turbidity values between -0001 and -0002 NTU's were recorded. Because such values fall within the range of accuracy (+/-2 NTU) of the turbidity probes, these data were not deleted.

There were a few instances at this NERR site where turbidity values less than -0002 were recorded. Although these fall outside the turbidity probes' range of accuracy (+/-2 NTU), these data were retained for future consideration and possible post-correction by users of the data. It is the users' responsibility to consider these data and retain or omit them from analyses if deemed appropriate.

Note to users: When utilizing these data, it is always best to also review the SWMP Meteorological (MET) dataset from this reserve to provide weather conditions that may affect the SWMP Water Quality (WQ) data from this reserve. For example, strong precipitation and strong sustained winds may cause elevations in turbidity and alter dissolved oxygen levels. Periods of drought may alter salinity patterns and lead to anoxic conditions in poorly-circulated regions of reserve waters. Hurricane and Nor'easter events may alter WQ parameters in the above, and other, manners. Provisional MET data from the JCNERR's MET station (station code: jacncmet) are available at the CDMO website (http://cdmo.baruch.sc.edu/), and are scheduled for review mid-April 2009.

Station-Specific Remarks/Notes:

Buoy 126 (site code: B6)

The deployment that started on 12/18/2007 and extended in to 2008 was not retrieved until 2/12/2008. This was about 3 and $\frac{1}{2}$ longer than the NERRS SWMP SOPs allow for. This was mostly likely due to the fact that the site was iced over.

During the following dates/times the sonde was removed from the tube for cleaning.

06/17/2008 13:30 07/10/2008 10:45 07/16/2008 09:45 08/05/2008 10:30 08/25/2008 14:00 09/16/2008 12:45 09/29/2008 14:00 10/06/2008 14:30

The sonde was pulled from the tube and taken to the lab for new batteries from 11/07/2008 12:15-30. The readings taken during this time were in a bucket.

At the time of recovery of the B6121807 deployment, it was discovered that a "ball" of mud and unidentified fouling organisms and/or algae had collected in the sonde guard. Some of this material had collected in the ports of the conductivity probe, affecting conductivity/salinity measurements and most likely cascading through the rest of the data (as the other parameters are dependent on the conductivity measurements). The conductivity probe also post-calibrated poorly. Unfortunately, a "start point" of this

event was not identifiable, so all data from this deployment are considered suspect. IMPORTANT NOTE TO USERS: While flagged as suspect for the aforementioned reasons, it appears that Temperature measurements remained accurate as compared to field-obtained measurements.

pH values during the B6031808 deployment appear a bit high, and the pH probe post-calibrated a little high, so all pH values from 03/18/08 14:00 to 04/16/08 14:30 should be considered suspect.

Buoy 139 (site code: B9)

Depth data during the 5/15/08 deployment appears to be higher in the depth column than surrounding deployments. A different technician than normal deployed the sonde and the reserve believes the sonde did not fall to the correct depth at that time.

There are some elevated and/or "spiky" turbidity values reported during the B9082608 deployment. Upon retrieval it was discovered that two blennies had established residence in the sonde guard. Because these fish were not present during a cleaning procedure performed on 09/16/08 12:30, and it cannot be established exactly when they arrived, all turbidity data from 09/16/08 12:45 to 09/29/08 13:45 (the date and time of retrieval of this sonde) are considered suspect.

The sonde was pulled from the tube on 09/16/08 12:30 for infield maintenance. The conductivity was clogged prior to the cleaning. However, the post was low after the sonde was pulled on 09/29/08 suggesting that the clog was not fully removed.

Chestnut Neck (site code: NE)

The NE site was listed as a site that used vented sondes in 2008. However, most likely due to staffing and sonde repair issues both vented and non-vented sondes were deployed at the site in 2008. Below is the list of each deployment and which sonde type was used.

```
NE011108
             sonde 5, vented
             sonde X, vented
NE021308
NE031208
             sonde X, vented
             sonde 5, vented
NE040808
             sonde 11, non-vented
NE050908
             sonde 11, non-vented
NE061108
             sonde 11, non-vented
NE070208
NE072908
             sonde NC, non-vented
             sonde 11, non-vented
NE080608
NE090808
             sonde 11, non-vented
             sonde 11, non-vented
NE100608
             sonde 11, non-vented
NE110608
NE121008
             sonde 12, vented
```

There is a period of altered temperature, salinity/conductivity, dissolved oxygen, depth, and pH during the NE050908 deployment on 05/12/08 and 05/13/08. While these data appear aberrant, this trend is also reflected at the Lower Bank station upriver, suggesting

this is an actual event (i.e.- intrusion of higher-salinity waters up the river); additionally, good post-calibration conductivity values support this.

The depths recorded in 2008 during the NE121207 and NE011108 deployments (01/01/08 00:00 - 01/11/08 13:30 and 01/11/08 13:45 - 02/13/08 13:15, respectively) appear to be less/shallower than the rest of the yearly file. Post-calibration depth checks of the depth sensor were correct for both deployments. It is suspected that either the vented cable at this station was not functioning correctly (but was inadvertently corrected when general site maintenance was performed on 02/13/08) or the datasonde was "hung up" in the pipe for these two deployments and data were collected at the incorrect depth.

Lower Bank (site code: BA)

The BA site was listed as a site that used vented sondes in 2008. However, most likely due to staffing and sonde repair issues both vented and non-vented sondes were deployed at the site in 2008. Below is the list of each deployment and which sonde type was used.

```
BA120407
             sonde 5, vented
BA010808
             sonde 5, vented
             sonde 12, vented
BA020606
             sonde 5, vented
BA030408
BA040108
             sonde 12, vented
BA050108
             sonde NC, non-vented
             sonde 12, vented
BA052908
BA070108
             sonde 12, vented
             sonde 12, vented
BA073008
             sonde 12, vented
BA090208
BA092908
             sonde 12, vented
             sonde 5, vented
BA102808
BA103008
             sonde 12, vented
             sonde 5, vented
BA120308
```

The pre- and post-calibration depth values of the BA010808 deployment appear a little off; in-situ depth values from 01/08/08 15:15 to 02/06/08 11:30 appear a bit elevated (deeper) and should be considered suspect.

A few aberrant data trends were observed during the BA050108 depoyment. Firstly, upon retrieval, it was discovered that an eel had established residence in the sonde guard and coated some probed with slime. This appears to have affected Dissolved Oxygen and pH measurements starting approximately 05/13/08 09:15 and continuing until the end of the deployment at 05/29/08 12:45. Secondly, the turbidity probe obviously failed and reported large negative values starting at 05/13/08 05:45 until the end of the deployment at 05/29/08 12:45. Finally, it does appear that there is a period of elevated salinity/conductivity on 05/12/08-05/13/08. While these data appear suspect, this trend is also reflected at the Chestnut Neck station downriver, suggesting this is an actual event (i.e.- intrusion of higher-salinity waters up the river); additionally, good post-calibration conductivity values support this.

The turbidity probe appears to not have been calibrated correctly prior to the 5/9/08 deployment. The post values were -5.7 and 124.2. The reserve believes there may have been contamination of the standard or a bubble on the optics during the cal.

The sonde was pulled from the tube on 08/20/08 08:45 for infield maintenance and cleaning.

It appears that the datasonde was "hung up" in the pipe during the BA090208 deployment) and therefore data were collected at the incorrect (shallower) depth.

Prior to the 10/28 deployment the only parameter that was calibrated was Dissolved oxygen. SpCond/salinity, depth, pH and turbidity data are all marked 1 SIC CSM from 10/28 to 10/30 as they were not calibrated prior to being deployed.