Reserve Name NOC NERR Water Quality Metadata Months and year the documentation covers January 1 – December 31, 2023 Latest Update: Latest Update: April 15, 2023

Note: This is a provisional metadata document; it has not been authenticated as of its download date. Contents of this document are subject to change throughout the QAQC process and it should not be considered a final record of data documentation until that process is complete. Contact the CDMO (cdmosupport@baruch.sc.edu) or reserve with any additional questions.

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons -

Justin Ridge, Research Coordinator 400 Commerce Ave. Morehead City, NC 28557 Phone: (252) 838-0851 Fax: (252) 247-3330

Email: justin.ridge(at)ncdenr.gov

Byron Toothman, Research Associate 5600 Marvin K. Moss Lane Wilmington, NC 28409 Phone: (910) 962-2334 Fax: (910) 962-2410

Email: toothmanb(at)uncw.edu

Heather Wells, Research Associate 5600 Marvin K. Moss Lane Wilmington, NC 28409 Phone: (910) 962-2335 Fax: (910) 962-2410

Email: wellsh(at)uncw.edu

2) Entry verification -

Deployment data are uploaded from the YSI data logger to a personal computer with Windows 7 or newer operating system. Files are exported from EcoWatch in a comma-delimited format (.CDF), EcoWatch Lite in a comma separated file (CSV) or KOR Software in a comma separated file (CSV) and uploaded to the CDMO where they undergo automated primary QAQC; automated Depth/Level corrections for changes in barometric pressure (cDepth or cLevel parameters); and become part of the CDMO's online provisional database. All pre- and post-deployment data are removed from the file prior to upload. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the reserve for secondary QAQC where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, remove any overlapping deployment data, append files, and export the resulting data file for upload to the CDMO. Upload after secondary QAQC results in ingestion into the database as provisional plus data, recalculation of cDepth or cLevel parameters, and finally tertiary QAQC by the CDMO and assimilation into the CDMO's authoritative online database. Where deployment overlap occurs between files, the data produced by the newly calibrated sonde is generally accepted as being the most accurate. For more information on QAQC flags and codes, see Sections 11 and 12. All QA/QC by the Reserve are performed by Heather Wells and Byron Toothman.

3) Research objectives -

Four long-term water quality monitoring stations have been established within the estuaries bordering Masonboro and Zeke's Islands of North Carolina's National Estuarine Research Reserve. Instruments are deployed vertically at all sites except East Cribbings, which was anchored to the bottom for the majority of 2012. The East Cribbings site was converted to a vertical deployment structure on December 4, 2012. Measurements are taken at 15-minute intervals for approximately two to four week periods continuously throughout the year. Parameters measured include Depth, Temperature, Salinity, Specific Conductivity, pH, Dissolved Oxygen, and Turbidity. The goal is to assess short-term variability and long-term changes (i.e., localized impacts of seasonal storm events, inter-annual differences from rainfall, magnitude of climatic influence from El Nino/La Nina events, etc.) in estuarine water parameters within relatively pristine sites.

4) Research methods -

The Estuarine Water Quality Monitoring Program began on March 2, 1992 at the Research Creek site of the Masonboro Island component. A second Masonboro Island site, Loosin Creek, was added on February 26, 2002. Data collection started on May 19, 1994 at the Zeke's Island component (East Cribbings site) and an additional site, Zeke's Basin, was added March 1, 2002. The procedures described below were instituted in June 1995 and thus do not cover data recorded previously.

Two data loggers are assigned to each of the four permanent monitoring stations and are generally not interchanged among sites unless malfunctions occur. Before each YSI EXO2 sonde is deployed, calibration and maintenance is performed following the manufacturer's instructions. Calibration standards are required for pH, turbidity and salinity; all other parameter calibrations are performed as described in the manual. Buffer solutions for a two-point pH calibration (pH 7 and 10) are purchased pre-made from a scientific supply house. The conductivity and turbidity standards are obtained from YSI. Chlorophyll probes are calibrated with deionized water and Rhodamine WT as a 2-point calibration. All sites have been monitored using with optical dissolved oxygen probes since 2009, prior to that time rapid pulse dissolved oxygen probes were used.

Data sondes are stored and transported wet in their calibration cup with and placed in a cooler for transport to the site. Monitoring stations are accessed using a small boat equipped with an outboard motor. During deployment the weather conditions and tide stage are recorded in the field observation log. The water quality instrument is placed inside a locked PVC tube that is attached to a piling if vertical deployment, and a steel cage if anchored horizontally approximately (15cm off the bottom). Every 15 minutes measurements are taken for Temperature, Specific Conductance, Salinity, Dissolved oxygen saturation, Dissolved oxygen concentration, Depth, pH, and Turbidity. All data are recorded in Eastern Standard Time. Vertical deployment structures were utilized at Research Creek beginning in 2008-2009, at Loosin Creek in 2009, and at Zeke's Basin in August 2010. Research Creek and East Cribbings vertical deployment structures were destroyed by Hurricane Isaias approximately 3 August 2020 and the stations were temporarily redeployed using the original anchored cinderblock style stations causing some mobility of the instrument with tide and currents. The temporary East Cribbings station was lost and the sonde recovered in 2021 and has not been redeployed since, pending the construction of new storm resilient stations in 2023. Nutrient samples continue to be collected at all stations.

During 2022, chlorophyll data was collected at East Cribbings, Loosin Creek, Research Creek, and Zeke's Basin stations. A 2-ppoint (0 NTU) chlorophyll calibration using DI water and Rhodamine WT was performed prior to sonde deployments. Chlorophyll spikes and negative values were rejected, while elevated values may be flagged as suspect depending on field conditions. We currently calibrate with a known concentration Rhodamine solutions.

At the end of the sample period the water quality instrument is exchanged with a freshly calibrated instrument and transported back to the laboratory wrapped in a wet, white towel. The weather and water quality measurements are again noted in the field observation log. The calibration drift and the effect of biofouling on the water quality instrument are documented by post-calibration protocols. The water quality data are then uploaded, and sent to CDMO for primary QAQC, and the instrument is cleaned and calibrated as noted previously.

A STORM3 transmitter was installed at the Research Creek and Zekes Basin stations on mm/dd/yy and transmits data to the NOAA GOES satellite, NESDIS ID #3B032698. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen-minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at www.nerrsdata.org.

5) Site location and character -

The components of North Carolina's National Estuarine Research Reserve (from north to south) are: Currituck Banks, Rachel Carson, Masonboro Island, and Zeke's Island. They are located along the southeast Atlantic coast of the United States. Currently, only data from Masonboro Island and Zeke's Island components are transferred to the CDMO. The four monitoring sites are:

A. Research Creek, Masonboro Island

The first Masonboro Island site (formerly called Masonboro Island (MS)) is 0.72 km north east from the mouth of Whiskey Creek, and east of the Intracoastal Waterway (ICW), in a small navigable channel called Research Creek at 34°09'21.7" latitude and 77° 50'59.9" longitude. The site typically has a salinity range of 20-35 ppt and a tidal range that averages around 1.2 meters. The sole source of freshwater is rain and salinity values as little as 10 ppt have been recorded during periods of heavy rain. The creek bottom is characterized by sand and detritus based sediment with areas of soft mud with a depth ranging from 0.2 to 2.6 m. Spartina spp. marsh and dunes surround the site, which is relatively unimpacted by manmade perturbations and it is not accessible to road traffic. The site experiences minimal boat traffic.

B. Loosin Creek, Masonboro Island

The second Masonboro Island site (added in 2002) is 1.2 km east of the ICW, and 2.5 km south west of Masonboro Inlet, in a small navigable channel called Loosin Creek at 34° 10'20.0" latitude and 77° 49'58.1" longitude. The site generally has a salinity range of 22-35 ppt and a tidal range that averages 1.2 meters. The sole source of freshwater is rain and salinity values as little as 15 ppt have been recorded during periods of heavy rain. The creek bottom is characterized by sand and detritus based sediment with areas of soft mud with a depth ranging from 0.1 to 2.5 m. Spartina spp. marsh and dunes surround the site, which is relatively unimpacted by manmade perturbations and it is not accessible to road traffic. The site experiences minimal boat traffic.

C. East Cribbings, Zeke's Island

The first Zeke's Island site (formerly called Zeke's Island (ZI)) is located 1.8 km south of Federal Point boat launch in a tidal basin estuary at 33° 56'23.5" latitude and 77° 56'28.1" longitude. This site receives minimal freshwater input from leakage of the Cape Fear River through the 5.6 km rock jetty that separates the two bodies of water. The site typically has a salinity range of 15-33 ppt, although values as little as 10 ppt have been recorded. Tidal range averages 1.2 meters. Depth varies, but usually can be found to range from 0.5 to 2.7 meters. Bottom type substratum consists of large rocks ("the cribbings") with sand and detritus based sediment. There are no pollutants from land. Marsh and dunes surround the site. It is not accessible to road traffic but experiences minimal boat traffic.

D. Zeke's Basin, Zeke's Island

The second Zeke's Island site (added in 2002) is located 0.8 km south east of the Federal Point boat launch in a tidal basin estuary at 33° 57'17.0" latitude and 77° 56'6.0" longitude. This site receives minimal freshwater input from leakage of the Cape Fear River through the 5.6 km rock jetty that separates the two bodies of water The site has a characteristic salinity range of 12-30 ppt, but values below 10 ppt have been observed and are often associated with periods of heavy rainfall. Tidal range averages 1.2 meters. Depth varies, but typically it can be found to range from 0.1 to 1.8 meters. Bottom type substratum consists of sand and detritus based

sediment with a layer of soft sulfuric mud. Marsh and dunes surround the site. It is not accessible to road traffic but experiences minimal boat traffic.

Station Code	SWMP Status	Station Name	Location	Active Dates	Reason Decommissioned	Notes
NOCECWQ	P	East Cribbing	33° 56' 23.64 N, 77° 56' 27.96 W	01/01/2002 00:00 -	NA	NA
NOCLCWQ	P	Loosin Creek	34° 10' 19.92 N, 77° 49' 58.08 W	02/01/2002 00:00 -	NA	NA
NOCRCWQ	Р	Research Creek	34° 9' 21.60 N, 77° 50' 59.64 W	01/01/2002 00:00 -	NA	NA
NOCZBWQ	Р	Zeke's Basin	33° 57' 16.92 N, 77° 56' 6.00 W	03/01/2002 00:00 -	NA	NA

6) Data collection period -

East Cribbings – not deployed pending new station construction

Loosin Creek

Deploy Date	Deploy Time	Retrieve Date	Retrieve Time
1/12/2022	13:30	2/21/2022	11:15
2/21/2022	11:30	3/22/2022	11:45
3/22/2022	12:00	4/19/2023	10:15
4/19/2022	10:30	5/23/2022	14:15
5/23/2022	14:30	6/23/2022	13:45
6/23/2022	14:00	7/14/2022	12:30
7/14/2022	12:45	8/16/2022	13:30
8/16/2022	13:45	9/16/2022	12:15
9/16/2022	12:30	10/12/2022	12:45
10/12/2022	13:00	11/16/2022	14:45
11/16/2022	15:00	12/13/2022	13:00
12/13/2022	13:15	1/13/2022	16:15

Research Creek

Deploy Date Deploy Time Retrieve Date Retrieve Time

1/12/2022	16:15	2/21/2022	11:00
2/21/2022	11:15	3/22/2022	11:15
3/22/2022	11:30	4/19/2022	10:00
4/19/2022	10:15	5/23/2022	14:00
5/23/2022	14:15	6/23/2022	13:30
6/23/2022	13:45	7/26/2022	12:45
7/26/2022	13:00	8/16/2022	11:00
8/16/2022	11:15	9/16/2022	12:15
9/16/2022	12:30	10/12/2022	13:00
10/12/2022	13:15	11/16/2022	15:00
11/16/2022	15:15	12/13/2022	12:45
12/13/2022	16:00	1/13/2022	16:00

Zekes Basin

Deploy Date	Deploy Time	Retrieve Date	Retrieve Time
1/12/2022	17:30	2/21/2022	13:00
2/21/2022	13:15	3/22/2022	12:45
3/22/2022	13:00	4/19/2022	11:45
4/19/2022	12:00	5/23/2022	15:15
5/23/2022	15:45	6/22/2022	17:15
6/22/2022	17:30	7/14/2022	11:45
7/14/2022	12:00	8/11/2022	10:30
8/11/2022	10:45	9/15/2022	11:45
9/15/2022	12:00	10/11/2022	12:15
10/11/2022	12:30	11/15/2022	12:30
11/15/2022	12:45	12/13/2022	14:00
12/12/2022	14:15	1/13/2023	15:00

7) Distribution -

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: http://www.nerrsdata.org/; accessed 12 October 2022.

Also include the following excerpt in the metadata which will address how and where the data can be obtained.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page www.nerrsdata.org. Data are available in comma delimited format.

8) Associated researchers and projects -

As part of the SWMP long-term monitoring program, XXX NERR also collects 15-minute meteorological data and monthly grab and diel samples for nutrient/pigment data which may be correlated with this water quality dataset. These data are available at www.nerrsdata.org.

Additional research projects are ongoing and continually changing. Check with the Research Coordinator or other contact person for an updated list of research.

II. Physical Structure Descriptors

9) Sensor specifications –

NOC NERR deployed Xylem Analytics EXO data sondes at all sites in 2020. All sondes used are the same model (EXO2) and employ the same sensor configuration.

YSI EXO Sonde:

Parameter: Temperature

Units: Celsius (C)

Sensor Type: CT2 Probe, Thermistor

Model#: 599870 Range: -5 to 50 C

Accuracy: -5 to 35: +/-0.01, 35 to 50: +/-0.05

Resolution: 0.01 C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: CT2 Probe, 4-electrode cell with autoranging

Model#: 599870 Range: 0 to 200 mS/cm

Accuracy: 0 to 100: +/- 0.5% of reading or 0.001 mS/cm; 100 to 200: +/- 1% of reading

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependant)

Parameter: Salinity

Units: practical salinity units (psu)/parts per thousand (ppt)

Sensor Type: CT2 probe, Calculated from conductivity and temperature

Range: 0 to 70 psu

Accuracy: +/- 1.0% of reading pr 0.1 ppt, whichever is greater

Resolution: 0.01 psu

OR

Parameter: Temperature

Units: Celsius (C)

Sensor Type: Wiped probe; Thermistor

Model#: 599827 Range: -5 to 50 C Accuracy: ±0.2 C Resolution: 0.001 C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: Wiped probe; 4-electrode cell with autoranging

Model#: 599827 Range: 0 to 100 mS/cm

Accuracy: ±1% of the reading or 0.002 mS/cm, whichever is greater

Resolution: 0.0001 to 0.01 mS/cm (range dependent)

Parameter: Salinity

Units: practical salinity units (psu)/parts per thousand (ppt)

Model#: 599827

Sensor Type: Wiped probe; Calculated from conductivity and temperature

Range: 0 to 70 ppt

Accuracy: ±2% of the reading or 0.2 ppt, whichever is greater

Resolution: 0.01 psu

Parameter: Dissolved Oxygen % saturation

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 599100-01

Range: 0 to 500% air saturation

Accuracy: 0-200% air saturation: +/- 1% of the reading or 1% air saturation, whichever is greater 200-500% air

saturation: +/- 5% or reading Resolution: 0.1% air saturation

Parameter: Dissolved Oxygen mg/L (Calculated from % air saturation, temperature, and salinity)

Units: milligrams/Liter (mg/L)

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 599100-01 Range: 0 to 50 mg/L

Accuracy: 0-20 mg/L: +/-0.1 mg/l or 1% of the reading, whichever is greater

20 to 50 mg/L: \pm - 5% of the reading

Resolution: 0.01 mg/L

Parameter: Non-vented Level - Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 33 ft (10 m)

Accuracy: +/- 0.013 ft (0.004 m) Resolution: 0.001 ft (0.001 m)

Parameter: pH Units: pH units

Sensor Type: Glass combination electrode Model#: 599701(guarded) or 599702(wiped)

Range: 0 to 14 units

Accuracy: +/- 0.1 units within +/- 10° of calibration temperature, +/- 0.2 units for entire temperature range

Resolution: 0.01 units

Parameter: Turbidity

Units: formazin nephelometric units (FNU) Sensor Type: Optical, 90 degree scatter Model#: 599101-01 Range: 0 to 4000 FNU

Accuracy: 0 to 999 FNU: 0.3 FNU or +/-2% of reading (whichever is greater); 1000 to 4000 FNU +/-5% of

reading

Resolution: 0 to 999 FNU: 0.01 FNU, 1000 to 4000 FNU: 0.1 FNU

Parameter: Chlorophyll Units: micrograms/Liter Sensor Type: Optical probe Model#: 599102-01 Range: 0 to 400 ug/Liter

Accuracy: Dependent on methodology Resolution: 0.1 ug/L chl a, 0.1% FS

<u>Include the following</u> DO (if a rapid pulse sensor was in use), Depth, Salinity and Turbidity data disclaimers:

Depth Qualifier:

The NERR System-Wide Monitoring Program utilizes YSI data sondes that can be equipped with either vented or non-vented depth/level sensors. Readings for both vented and non-vented sensors are automatically compensated for water density change due to variations in temperature and salinity; but for all non-vented depth measurements, changes in atmospheric pressure between calibrations appear as changes in water depth. The error is equal to approximately 1.02 cm for every 1 millibar change in atmospheric pressure, and is eliminated for vented sensors because they are vented to the atmosphere throughout the deployment time interval.

Beginning in 2006, NERR SWMP standard calibration protocol calls for all non-vented depth sensors to read 0 meters at a (local) barometric pressure of 1013.25 mb (760 mm/hg). To achieve this, each site calibrates their depth sensor with a depth offset number, which is calculated using the actual atmospheric pressure at the time of calibration and the equation provided in the SWMP calibration sheet or digital calibration log. This offset procedure standardizes each depth calibration for the entire NERR System. If accurate atmospheric pressure data are available, non-vented sensor depth measurements at any NERR can be corrected.

In 2010, the CDMO began automatically correcting Depth/Level data for changes in barometric pressure as measured by the reserve's associated meteorological station during data ingestion. These corrected Depth/Level data are reported as cDepth and cLevel, and are assigned QAQC flags and codes based on QAQC protocols. Please see sections 11 and 12 for QAQC flag and code definitions.

NOTE: older Depth data cannot be corrected without verifying that the depth offset was in place and whether a vented or non-vented depth sensor was in use. No SWMP data prior to 2006 can be corrected using this method. The following equation is used for corrected Depth/Level data provided by the CDMO beginning in 2010: ((1013-BP)*0.0102)+Depth/Level = cDepth/cLevel.

Salinity Units Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by reserves. While the 6600 series sondes report salinity in parts per thousand (ppt) units, the EXO sondes report practical salinity units (psu). These units are essentially the same and for SWMP purposes are understood to be equivalent, however psu is considered the more appropriate designation. Moving forward the NERR System will assign psu salinity units for all data regardless of sonde type.

Turbidity Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by reserves. While the 6600 series sondes report turbidity in nephelometric turbidity units (NTU), the EXO sondes use formazin nephelometric units (FNU). These units are essentially the same but indicate a difference in sensor methodology, for SWMP purposes they will be considered equivalent. Moving forward, the NERR System will use FNU/NTU as the designated units for all turbidity data regardless of sonde type. If turbidity units and sensor methodology are of concern, please see the Sensor Specifications portion of the metadata.

Chlorophyll Fluorescence Disclaimer:

YSI chlorophyll sensors (6025 or 599102-01) are designed to serve as a proxy for chlorophyll concentrations in the field for monitoring applications and complement traditional lab extraction methods; therefore, there are accuracy limitations associated with the data that are detailed in the YSI manual including interference from other fluorescent species, differences in calibration method, and effects of cell structure, particle size, organism type, temperature, and light on sensor measurements.

10) Coded variable definitions -

Sampling station:	Sampling site code:	Station code:		
Sampling station:	Sampling site code:	Station code:		
Research Creek	RC	nocrcwq		
Loosin Creek	LC	noclcwq		
East Cribbings	EC	nocecwq		
Zeke's Basin	ZB	noczbwq		

11) QAQC flag definitions -

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is missing and above or below sensor range. All remaining data are then flagged 0, passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions -

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F_Record column.

General Erro	ors
GIC	No instrument deployed due to ice
GIM	Instrument malfunction
GIT	Instrument recording error; recovered telemetry data
GMC	No instrument deployed due to maintenance/calibration
GNF	Deployment tube clogged / no flow
GOW	Out of water event
GPF	Power failure / low battery
GQR	Data rejected due to QA/QC checks
GSM	See metadata
Corrected	Depth/Level Data Codes
GCC	Calculated with data that were corrected during QA/QC
GCM	Calculated value could not be determined due to missing data
GCR	Calculated value could not be determined due to rejected data
GCS	Calculated value suspect due to questionable data
GCU	Calculated value could not be determined due to unavailable data
000	Calculated value could not be determined due to anavanable data
Sensor Error	rs
SBO	Blocked optic
SCF	Conductivity sensor failure
SCS	Chlorophyll spike
SDF	Depth port frozen
SDG	Suspect due to sensor diagnostics
SDO	DO suspect
SDP	DO membrane puncture
SIC	Incorrect calibration / contaminated standard
SNV	Negative value
SOW	Sensor out of water
SPC	Post calibration out of range
SQR	Data rejected due to QAQC checks
SSD	Sensor drift
SSM	Sensor malfunction
SSR	Sensor removed / not deployed
STF	Catastrophic temperature sensor failure
STS	Turbidity spike
SWM	Wiper malfunction / loss
5 W W	wiper manufector / 1055
Comments	
CAB*	Algal bloom
CAF	Acceptable calibration/accuracy error of sensor
CAP	Depth sensor in water, affected by atmospheric pressure
CBF	Biofouling
CCU	Cause unknown
CDA*	DO hypoxia (<3 mg/L)
CDB*	Disturbed bottom
CDF	Data appear to fit conditions
CFK*	Fish kill
CIP*	Surface ice present at sample station
CLT*	Low tide
CMC*	In field maintenance/cleaning
CMD*	Mud in probe guard
CND	New deployment begins
CRE*	Significant rain event
CSM*	See metadata

CSM*

See metadata

CTS Turbidity spike

CVT* Possible vandalism/tampering CWD* Data collected at wrong depth CWE* Significant weather event

13) Post deployment information –

[Instructions/Remove: Use this section for documentation of post calibration information for instruments deployed at each site. At a minimum, include: Date (specify if this is the deployment begin date or date of post calibration), SpCond, DO%, pH (7), and Turb (0 NTU). Depth and additional pH and Turb post cal information are also beneficial. If using the summary table option in the online deployment interface, you may copy and paste the exported tables here and edit them as necessary (please verify contents).]

Post Calibration Tables

East Cribbings - Not deployed

Loosin Creek

Deploy Date	SpCond	DO	pH7	pH10	Turb	Turb	Depth	CHL(0)	CHL(66)
1/12/2022	51.492(50.0)	99.4	7.14	10.03		-1.2(124.0)	-0.025(-0.025)	-0.14	
2/21/2022	52.269(50.0)	100	7.06	9.91	0.38(0.0)		0.008(-0.032)	0.3	
3/22/2022	50.59(50.0)	99	7.09	10	-0.02(0.0)		-0.019(-0.014)	-0.28	
4/19/2022	50.346(50.0)	99.7	7.07	10.02	0.27(0.0)		0.051(-0.014)	-0.07	
5/23/2022	11.64(50.0)	98.7	7.14	9.97	0.91(0.0)	123.38(124.0)	0.047(0.048)	0.68	63.38
6/23/2022	51.299(50.0)	100.9	7.13	10.09	0.34(0.0)	111.43(124.0)	0.098(0.079)	0.14	63.93
7/14/2022	6.235(50.0)	98.2	7.57	9.43	176.43(0.0)	195.61(124.0)	0.007(0.006)	2.15	14.87
8/16/2022	50.466(50.0)	100.8	7.08	9.39	0.38(0.0)	104.67(124.0)	0.089(0.1)	0.09	60.6
9/16/2022	49.942(50.0)	100.6	7.08	9.9	0.15(0.0)	121.96(124.0)	0.073(0.069)	0.12	68.89
10/12/2022	50.633(50.0)	100.3	8.02	11.21	-0.06(0.0)	124.5(124.0)	0.06(0.048)	-0.05	63.6
11/16/2022	50.72(50.0)	99.5	7.14		0.0(0.0)	119.78(124.0)	0.043(0.038)	0	66.99
12/13/2022									

Research Creek

Deploy Date SpCond DO pH7 pH10 1/12/2022 51.496(50.0) 99.7 6.97 9.88 2/21/2022 51.041(50.0) 100.3 7.03 9.87	Turb 0.23(0.0) 0.55(0.0)	<u>Turb</u>	<u>Depth</u> 0.037(0.027)	CHL(0) 0.37	<u>CHL(66)</u>
,	` '		`	0.37	
2/21/2022 51.041(50.0) 100.3 7.03 9.87	0.55(0.0)		0.020(.0.022)		
2/21/2022 31.041(30.0) 100.3 7.03 7.07			-0.038(-0.032)	0.23	
3/22/2022 50.683(50.0) 99.4 6.97 9.86	-0.65(0.0)		-0.022(-0.014)	0.03	
4/19/2022					
5/23/2022 51.181(50.0) 99.7 7.14 9.94	2.57(0.0)	121.81(124.0)	0.053(0.048)	0.97	59.01
6/23/2022 0.334(50.0) 100.2 7.15 10.08	0.77(0.0)	116.73(124.0)	0.061(0.079)	0.7	63.94
7/26/2022 50.905(50.0) 99.4 7.08 9.99	2.7(0.0)	59.21(124.0)	0.018(0.006)	1.12	61.05
8/16/2022 45.4(50.0) 112.6 7.02 9.95	0.16(0.0)	119.63(124.0)	0.109(0.1)	0.03	67.8
9/16/2022 50.44(50.0) 101.1 7.11 9.97	0.56(0.0)	96.07(124.0)	-0.069	-0.15	61.29
10/12/2022 10.2(50.0) 102.5 7.33 10.19	0.16(0.0)	132.8(124.0)	-0.048	-0.09	63.59
11/16/2022 50.78(50.0) 98.8 7.12	0.22(0.0)	120.12(124.0)	-0.072(-0.0)	-0.12	65.69
12/13/2022					

Zekes Basin

^{*}Note: pH post-deployment readings are temperature dependent and minor variations are expected as a result.

Deploy Date	<u>SpCond</u>	DO	<u>pH7</u>	<u>pH10</u>	<u>Turb</u>	<u>Turb</u>	<u>Depth</u>	CHL(0)	CHL(66)
1/12/2022	51.409(50.0)	99.2	7.01	10.01	0.22(0.0)		0.02(0.027)	0.23	
2/21/2022	<u>51.035(50.0)</u>	<u>99.6</u>	7.32	10.05	0.57(0.0)		<u>-0.025(-0.032)</u>	<u>-0.14</u>	
3/22/2022	50.33(50.0)	98.3	7.07	<u>9.9</u>	0.38(0.0)		<u>-0.011(-0.014)</u>	0.03	
4/19/2022	50.67(50.0)	101.3	7.23	9.88	1.75(0.0)		0.06(0.058)	<u>-0.4</u>	
5/23/2022	51.377(50.0)	99.8	<u>7.53</u>	9.42	0.91(0.0)	125.63(124.0)	0.04(0.048)	<u>1.27</u>	<u>63.75</u>
6/22/2022	<u>51.501(50.0)</u>	100.8	<u>7.18</u>	9.93	5.94(0.0)	116.56(124.0)	0.087(0.079)	0.85	63.28
7/14/2022	50.639(50.0)	98.3	7.17	<u>9.9</u>	<u>-0.33(0.0)</u>	90.07(0.0)	<u>-0.003(-0.004)</u>	<u>-0.29</u>	53.99
8/11/2022	39.704(50.0)	<u>101.4</u>	<u>7.51</u>	9.14			0.113(0.11)	<u>1.33</u>	<u>61.33</u>
9/15/2022	<u>51.281(50.0)</u>	101.3	<u>7.1</u>	10.01	1.28(0.0)	130.0(124.0)	0.088(0.069)	0.68	<u>62.19</u>
10/11/2022	<u>47.8(50.0)</u>	99.8	<u>7.19</u>	10.27	1.28(0.0)	123.8(124.0)	0.044(0.058)	0.87	66.38
11/15/2022	49.936(50.0)	<u>99.5</u>	7.03	9.93	0.02(0.0)	121.1(124.0)	<u>-0.017(0.038)</u>	<u>-0.12</u>	64.29
12/12/2022									

14) Other remarks/notes –

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

For all data

New deployments were flagged as <0> (CND).

Temperature affected measurements (SpCond/Salinity, pH) were rejected anytime the temperature sensor was affected by out of water events (pronounced change in temp values during extreme low tide readings).

Data affected by low tide were coded (CLT). Lower SpCond/Salinity was addressed with <1> (CLT) due to the probability of fresher surface waters being measured as the water level decreased. Salinities approaching zero or less were addressed as <-3> [GOW] (CLT) and affected data were also rejected accordingly.

All depth data corresponding to rejected or suspect SpCond/Salinity data (due to low tide) were also rejected <-3> [SOW] (CLT) or flagged as suspect <1>[SOW](CLT). Depth sensor is located above Conductivity/Temperature (C/T) sensor and will be exposed when SpCond approaches 0.0. It is possible that some probes were still in the water during out of water events. The vertical orientation of the sondes means that shorter probes (pH, C/T) will be affected before longer probes (dissolved oxygen, turbidity).

All negative depth flagged and rejected unless affected by barometric pressure and coded as suspect <1> [SNV] (CAP).

Dissolved oxygen concentrations < 3 mg/L were coded < 0 > (CDA) along with corresponding values for DO% during hypoxic events.

Increased turbidity readings occurred throughout many deployments with unknown causes and were coded as such:

<-3> [STS] (CCU) = rejected turbidity spike <1> [STS] (CCU) = Suspect turbidity spike

Small negative turbidity values < -2 NTU were flagged as suspect, <1> (CAF).

Negative chlorophyll values were flagged as <-3> [SNV].

Chlorophyll spikes were flagged as suspect <1> [SCS], or rejected <-3> [SCS].

East Cribbings

General

This station was converted to EXO2 sondes during 2015, beginning with the 09/15/2015 deployment.

This site has had increasing problems with mud and silt in the deployment tube, affected readings and filling the guard above the level of the sensors. Affected data are flagged suspect or rejected with the CMD comment code indicating mud in sensor guard. This particularly affects turbidity, chlorophyll, and optical sensors. Chlorophyll may spike with turbidity in part by benthic microalga adsorbing to suspended sediment particles.

This site is within a shallow lagoonal system and the sonde is subject to out of water events, especially at spring low tides. (Vertical deployment has been in place since 12/04/12.)

Missing data due to deployment maintenance:

Depth

There were several times that changes in barometric pressure affected the depth sensor. The depth records were flagged as suspect, <1> [SNV] (CAP) when the values were negative but the sensors were still in the water.

SpCond/Salinity

This site experiences out of water events and may sample a freshwater lens in advance or following this events.

The SpCond/Salinity post-calibration values were unacceptable for several deployment periods. All data were flagged as suspect or rejected for the following affected deployments:

Dissolved Oxygen

Dissolved oxygen data can be quite variable. These cycles often correlate with tidal fluctuation and may be accentuated by presence of invasive drift algae, *Gracilaria vermiculophylla*.

Values above 100% saturation are not uncommon and values above 200% may occur during warmer months. These reflect conditions at the site, occurring at the same time as elevated pH values and data were retained (unless affected by out of water events, potentially driven by *G. vermiculophylla* presence). Data were not flagged as suspect though some of the upper limits for percent saturation were surpassed.

The following deployments did not pass post calibration with acceptable values with rejected or suspect data:

pΗ

pH postcal was unacceptable for the following deployments causing data to be flagged as suspect or rejected:

Turbidity

Elevated turbidity readings were rejected or flagged as suspect.

Turb postcal was unacceptable for the following deployments causing data to be flagged as suspect or rejected:

Chlorophyll

Occasional chlorophyll spikes occurred and were flagged as suspect or rejected, cause unknown.

Chlorophyll malfunction. Spontaneous data dropped to <0. May be indicating future sensor failure.

Loosin Creek

General

There were several times that changes in barometric pressure affected the depth sensor. The depth records were flagged as suspect, <1> [SNV] (CAP) when the values were negative but the sensors were still in the water.

Missing data at the end of the 03/22/2022 deployment, no data collected from 04/08/2022 – through 04/19/2022.

The 04/19/2022 deployment had an internal battery/clock issue, and the time date stamp was incorrect. These data may be added later if we can estimate the deployment times. For now this data is treated as missing data.

SpCond sensor failed during the 05/23/2022 deployment. Data from 06/10/2022 through the end of the deployment was rejected, including dissolved oxygen and depth data.

SpCond/Salinity

This site experiences out of water events and may sample a fresh water lens in advance or following this events.

SpCond sensor failed during the 05/23/2022 deployment. Data from the beginning of the deployment through 6/10/2022 was flagged as suspect though appear to fit conditions. Data from 06/10/2022 through the end of the deployment was rejected, including dissolved oxygen and depth data.

SpCOnd sensor failed during the 07/14/2022 deployment. Data from the beginning of the deployment through 08/03/2022 was flagged as suspect, did not pass post calibration. Data from 08/03/2022 through the end of deployment was rejected, including dissolved oxygen and depth data.

The SpCond/Salinity post-calibration values were unacceptable for several deployment periods. All data were flagged as suspect or rejected for the following affected deployments:

Dissolved Oxygen

The following deployments did not pass post calibration with acceptable values with rejected or suspect data:

SpCond sensor failed during the 05/23/2022 deployment. Data from 06/10/2022 through the end of the deployment was rejected, including dissolved oxygen and depth data.

SpCond sensor failed during the 07/14/2022 deployment. Data from 08/03/2022 through the end of the deployment was rejected, including dissolved oxygen and depth data.

pН

pH postcal was unacceptable for the following deployments causing data to be flagged as suspect or rejected.

07/14/2022 suspect, seems to fit conditions 08/16/2022 suspect, initially fits conditions, then low during mid to end deployment

10/12/2022 13:00 Calibration poor. pH module needed replacement but none available – deployed with bad pH module resulting in elevated pH. Data rejected through the end of the deployment.

Turbidity

Elevated turbidity readings were rejected or flagged as suspect.

Turb postcal was unacceptable for the following deployments causing data to be flagged as suspect or rejected. 07/14/2022

Chlorophyll

Occasional chlorophyll spikes occurred and were flagged as suspect or rejected, cause unknown. 02/21/2022 deployment experienced many chlorophyll spikes resulting in rejected data. Cause unknown though macroalgae would be likely during that time of year.

Negative chlorophyll values <0.4 were rejected. There were many negative readings during 12/06/2019 deployment which impacted data from 01/01/2022 - 01/12/2022. The following deployment, 01/12/2022 - 02/21/2022, also experienced some negative values which were rejected.

Data from 07/14/2022 deployment flagged as suspect and did not pass post calibration within acceptable range.

Research Creek

General

There were several times that changes in barometric pressure affected the depth sensor. The depth records were flagged as suspect, <1> [SNV] (CAP) when the values were negative but the sensors were still in the water.

Missing data due to sonde swap <-2> [GMC]: 01/12/2022 16:00 07/26/2022 12:45

Data collected at wrong depth due to ISCO maintenance. Flagged <-3> [GOW] (CMC): 03/26/2022 15:30

Out of water events occurred on 02/21/2022 and 02/22/2022 during low tide. All parameters rejected during these events.

Mud in the guard impacted all parameters except temperature and depth from 05/15/2022 through 05/23/2022.

Possible short circuit related to Temp/Cond sensor following 12/14/22 also affecting DO. All related data rejected.

SpCond/Salinity

This site experiences out of water events and may sample a fresh water lens in advance or following this events.

The SpCond/Salinity post-calibration values were unacceptable for several deployment periods. All data were flagged as suspect or rejected for the following affected deployments:

06/23/2022 deployment had a SpCond failure immediately upon start of deployment though the sensor calibrated properly in the lab. Data for SpCond, salinity, dissolved oxygen and depth were rejected for entre deployment. The buoy for deployment structure was missing and sonde retrieval was delayed until accessible at a low tide, resulting in a longer than usual deployment until July 26, 2022.

08/16/2022 deployment had a SpCond failure immediately upon start of deployment though the sensor calibrated properly in the lab. Data for SpCond, salinity, dissolved oxygen and depth were rejected for entre deployment. Temperature also was impacted and data rejected from 08/23/2022 through the end of the deployment. Readings fluctuated wildly then reported not a number (NAN).

12/13/2022 12:45 - 12/14/2022 06:15 Temp data = NAN. All other data rejected except Turbidity and Depth.

During the 11/16/2022 deployment SpCond/Sal experienced sporadic electrical shorting. All associated data (SpCond/sal, DO mg/L, depth) rejected <-3> [SSM] (CSM)

Dissolved Oxygen

The following deployments did not pass post calibration with acceptable values with rejected or suspect data:

Note about daytime DO elevated on several days following 02/16/2022 - 02/19/2022. Possible algal bloom or macroalga around sonde? Flagged suspect.

DO optic likely blocked by mud in guard toward end of deployment. Coincides with sustained Chl spikes. Affected data flagged <-3> [SBO] (CMD) 06/23/2022 01:30 – end of deployment.

06/23/2022 deployment had a SpCond failure immediately upon start of deployment though the sensor calibrated properly in the lab. Data for SpCond, salinity, dissolved oxygen and depth were rejected for entre deployment. The buoy for deployment structure was missing and sonde retrieval was delayed until accessible at a low tide, resulting in a longer than usual deployment until July 26, 2022.

08/16/2022 deployment had a SpCond failure immediately upon start of deployment though the sensor calibrated properly in the lab. Data for SpCond, salinity, dissolved oxygen and depth were rejected for entre deployment. Temperature also was impacted and data rejected from 08/23/2022 through the end of the deployment. Readings fluctuated wildly then reported not a number (NAN).

рH

pH postcal was unacceptable for the following deployments causing data to be flagged as suspect or rejected.

02/21/2022 pH elevated in 7 during post calibration, data flagged as suspect.

Turbidity

Elevated turbidity readings were rejected or flagged as suspect.

Turbidity post calibration value slightly elevated following the 07/26/2022 deployment. Data appear to fit conditions for the site other than a few turbidity spikes and rejected data at the end of the deployment.

Turb optic likely blocked by mud in guard toward end of deployment. Affected data flagged <-3> [SBO] (CMD) 06/22/2022 12:15– end of deployment.

Chlorophyll

Occasional chlorophyll spikes occurred and were flagged as suspect or rejected, cause unknown. Many spiked occurred during the 01/12/2022 deployment, resulting in rejected data. Cause unknown though macroalgae would be likely during that time of year.

Some elevated reading rejected towards end of 07/26/2022 deployment. Some elevated readings rejected toward the end of the 12/13 deployment

Depth

The depth data disappeared during the multiple deployments during 2022.. Depth data missing during this time, coded as instrument malfunction. The depth occasionally returned for the remainder of the deployment.

06/23/2022 deployment had a SpCond failure immediately upon start of deployment though the sensor calibrated properly in the lab. Data for SpCond, salinity, dissolved oxygen and depth were rejected for entre deployment. The buoy for deployment structure was missing and sonde retrieval was delayed until accessible at a low tide, resulting in a longer than usual deployment until July 26, 2022.

Depth disappeared on 07/01/22-07/03/2022, flagged as missing data. This is an ongoing problem with telemetered sites. Data for depth returned until 07/06/2022. There were other brief periods of no depth collected before data returned but recorded depth data for the entire deployment was rejected due to conductivity failure.

Depth data missing from 07/29/2022 through the end of deployment 08/16/2022.

08/16/2022 deployment had a SpCond failure immediately upon start of deployment though the sensor calibrated properly in the lab. Data for SpCond, salinity, dissolved oxygen and depth were rejected for entre deployment. Depth data was not reliable due to a conductivity sensor failure during the 08/16/2022 deployment, but values disappeared on 08/24/2022.

Depth data disappeared during mid-deployment, on multiple occasions throughout the year. We are working to determine the cause and make repairs.

Data collected at the wrong depth during station maintenance 12/13/2022 14:00 <1> (CWD)

Zeke's Basin

General

There were several times that changes in barometric pressure affected the depth sensor. The depth records were flagged as suspect, <1> [SNV] (CAP) when the values were negative but the sensors were still in the water.

SpCond/Salinity

This site experiences out of water events and may sample a fresh water lens in advance or following this events.

The SpCond/Salinity post-calibration values were unacceptable for several deployment periods. All data were flagged as suspect or rejected for the following affected deployments: 08/11/2022 data flagged as suspect beginning 08/29/2022

Dissolved Oxygen

The following deployments did not pass post calibration with acceptable values with rejected or suspect data:

pН

pH postcal was unacceptable for the following deployments causing data to be flagged as suspect or rejected:

02/21/2022

08/11/2022 deployment, flagged as suspect beginning 08/29/2022

pH sensor failure:

Turbidity

Elevated turbidity readings were rejected or flagged as suspect: NONE

Turb postcal was unacceptable for the following deployments causing data to be flagged as suspect or rejected:

11/7/2022 through the end of the deployment on 12/15/2022

Turbidity sensor failure occurred early during 08/11/2022 deployment, resulting in missing data from 08/11/2022 - 09/15/2022.

Chlorophyll

Occasional chlorophyll spikes occurred and were flagged as suspect or rejected, cause unknown.

Chlorophyll postcal was unacceptable for the following deployments causing data to be flagged as suspect or rejected:

6/22/2022

7/14/2022

Depth