# North Inlet-Winyah Bay (NIW) NERR Water Quality Metadata

January 2014 – December 2014 Latest Update: August 9, 2016

# I. Data Set and Research Descriptors

# 1) Principal investigator(s) and contact

Address: North Inlet-Winyah Bay NERR

PO Box 1630

Georgetown, SC 29440 phone: (843)-546-3623 fax: (843)-546-1632

Contact Persons:

Dr. Erik Smith, Research Coordinator email: erik@belle.baruch.sc.edu; (843)-904-9035 Tracy Buck, Research Specialist email: tracy@belle.baruch.sc.edu; (843)-904-9027

# 2) Entry verification

Deployment data are uploaded from the YSI data logger to a Personal Computer (IBM compatible). Files are exported from EcoWatch in a comma-delimited format (.CDF) and uploaded to the CDMO where they undergo automated primary QAQC; automated depth/level corrections for changes in barometric pressure (cDepth or cLevel parameters); and become part of the CDMO's online provisional database. All pre- and post-deployment data are removed from the file prior to upload. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the Reserve for secondary QAQC where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, remove any overlapping deployment data, append files, and export the resulting data file for upload to the CDMO. Upload after secondary QAQC results in ingestion into the database as provisional plus data, recalculation of cDepth or cLevel parameters, and finally tertiary QAQC by the CDMO and assimilation into the CDMO's authoritative online database. Where deployment overlap occurs between files, the data produced by the newly calibrated sonde is generally accepted as being the most accurate. For more information on QAQC flags and codes, see Sections 11 and 12. Research Specialist, Tracy Buck edited and archived the 2014 data for Thousand Acre, Debidue Creek, Oyster Landing, and Clambank Creek.

# 3) Research objectives

The principal objective of this study is to record long-term water quality data for North Inlet/Winyah Bay in order to observe any physical changes or trends in water quality over time. Four sites were chosen; two to represent pristine sites and two to represent impacted sites. The Oyster Landing site is located near the center of the Reserve and is considered pristine. The Clambank site is located on a waterway that receives run-off from the undeveloped area of the reserve and is considered a pristine site. Debidue Creek and Thousand Acre are both located in waterways that receive run-off from heavily developed areas, and are therefore considered our impacted sites. Measurements were taken every 15 minutes over roughly two week collecting periods at the Oyster Landing, Debidue Creek, Clambank and Thousand Acre sites.

### 4) Research methods

YSI 6600 series sondes are currently mounted on either stand alone pilings (Debidue Creek, Oyster Landing) or bridge/dock pilings (Thousand Acre/Clambank Creek). Starting on 11/25/2015 an EXO sonde was deployed at the Oyster Landing site. Each sonde is deployed in a 4 inch diameter PVC pipe which is strapped to the piling using stainless steel banding. The PVC pipe is offset from the pilings by inserting a 2x6 inch piece of treated lumber between the pipe and piling. This allows better flow over the sensors at the bottom of the pipes. The PVC pipe has a stainless steel stop bolt through its center 30 cm from the bottom of the pipe, ensuring that the sonde is seated 30 cm from the bottom of the creek. Directly above the stop bolt, 1 inch holes are drilled 0.5 cm apart within a 1 foot section of the pipe. This allows water flow over the sonde sensors. Two 2.5 inch holes are drilled perpendicular to each other at 1 foot intervals along the remaining length of the PVC pipe to allow for flushing. The bottom 4 feet of the pipe is painted inside and out with antifouling paint to minimize biofouling around the sensors. All pipes are switched out at least once a year (OL, CB, TA), while DC is usually switched out twice a year due to excessive fouling at that site.

Every 15 minutes measurements of specific conductivity, salinity, percent saturation, dissolved oxygen, water temperature, pH, turbidity, and water level are recorded. The two-week sampling interval was selected due to biofouling of the individual probes and expected battery life. Prior to deployment, the sondes are calibrated according to the procedures in the YSI Service Manual and the Standard Operating Procedures V4.1 provided by the NERR CDMO. Calibrations conducted prior to deployment of the instruments include a pH calibration using a two-point method with 7 and 10 unit standards. The turbidity calibration also uses a two-point method using 0 and 123 NTU standards. Specific Conductivity was calibrated using a one-point method with a 10 mS/cm standard that was purchased through YSI, Inc. Depth and dissolved oxygen are calibrated according to the barometric pressure at the time of calibration. Dissolved oxygen is calibrated using the air-saturated water method. The turbidity and ROX optical dissolved oxygen probe wipers are changed before each deployment. All of the sonde probes' nonmeasuring surfaces, wipers and probe guards are covered with copper tape to minimize biofouling. At the end of each sampling interval, the sondes are brought back to the laboratory to be downloaded and cleaned. The sondes are allowed to continue recording data for at least 1 hour under lab conditions in a water-saturated air environment. Before the instruments are cleaned, a post calibration reading was taken from each instrument in fresh standard to see if any of the instruments exhibit drift (see Section 13). Post calibration readings of depth and dissolved oxygen are taken once sonde readings have stabilized in a bucket of bubbling (air saturated) tap water. Two sondes are assigned to each of the four monitoring stations to allow the sondes to be switched out the same day, and minimize data loss.

A Sutron Sat-Link2 transmitter was installed at the Oyster Landing station on 07/07/06 and transmits data to the NOAA GOES satellite, NESDIS ID #3B031302. A Sutron Sat-Link2 transmitter was installed at the Debidue Creek station on 04/28/09 and transmits data to the NOAA GOES satellite, NESDIS ID #3B049722. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at <a href="https://www.nerrsdata.org">www.nerrsdata.org</a>.

# 5) Site location and character

The North Inlet-Winyah Bay National Estuarine Research Reserve is located on the Southeastern Atlantic coast of the United States in two tidal estuaries, North Inlet and Winyah Bay, near Georgetown, South Carolina. The North Inlet estuary, located approximately 10 km east of Georgetown, is a bar-built Class C type estuary (Pritchard, 1955). The North Inlet estuary is composed of numerous winding tidal creeks, and is considered a pristine tidal estuary due to minimal anthropogenic impacts. The watershed drains a 24.8 km² area of mostly pine forest and a moderately developed residential watershed to the north. The Winyah Bay estuary, classified as a Class B type estuary by Pritchard (1955), which originates in the Blue Ridge Mountains of North Carolina, is one of the largest river-estuary ecosystems on the Eastern Seaboard.

It is located 14.4 km south of North Inlet. Winyah Bay drains the sub-basins of 6 major rivers, which are heavily impacted by agriculture, mining, and industry. The rivers drain approximately 46,736 km<sup>2</sup> of uplands and marshes. Descriptions of the four sampling stations are as follows:

- A) Clambank Creek (CB) (lat 33:20:02, long 79:11:35). The Clambank Creek monitoring site is located roughly in the center of the reserve property. This site is surrounded by a Spartina marsh and drains associated uplands. Salinity can range from near fresh water concentrations following large rainfall events, to full strength seawater during most of the year. The creek width and depth at MHW at the sampling site are 40 m and 2.4 m respectively. The average depth of the creek at MHW is 2.0 m with an average tidal range of approximately 1.4 meters. The bottom is comprised mostly of oyster shell hash and some fine sediment. This site is considered a pristine site and is influenced by its close proximity to North Inlet.
- B) **Debidue Creek** (DC) (lat 33:21:37, long 79:10:03). The Debidue Creek monitoring site is considered an impacted site that is located approximately 1 km south of the Debidue Colony. The Colony is a large development built on man-made canals that directly drain into the northern portion of Debidue Creek. The DC site is also located in an ocean-dominated Spartina marsh that was formerly surrounded by pine-dominated uplands. Salinity can range from 0 to full strength seawater and an average tidal range of approximately 2 m. The approximate depth and width at MHW at the site is 2.2 and 70 m respectively. The bottom is comprised mostly of oyster shell hash with some fine sediment and detritus.
- C) **Oyster Landing** (OL) (lat. 33:20:58, long. 79:11:20). The Oyster Landing monitoring site is considered a fairly pristine and undisturbed area located at the end of the Oyster Landing pier, which is also where the NI-WB Bay NERR weather station site is located. The pier stretches into the upper reaches of Crabhaul Creek in the mid western portion of North Inlet. The sampling site is located approximately 2.8 km from the headwaters of Crabhaul Creek. The creek directly drains pine-forested uplands and wetlands. Salinity can range from 0 to full strength seawater depending on rainfall events and upland drainage. The average tidal range is approximately 1.44 m. The creek has an average depth of 2 m MHW and average width of 150 m MHW. The bottom is comprised mostly of oyster shell hash with some fine sediment and detritus.
- D) Thousand Acre (TA) (lat. 33:17:57, long. 79:15:22) The Thousand Acre monitoring site is located in Thousand Acre marsh tidal creek and is on the NW corner of the west bridge of Thousand Acre marsh (this site was relocated 07-19-99 to the current location due to heavy siltation and degrading data quality). The present site is about 15 m from the mouth of the creek. At the sampling site, creek depth is approximately 2 m MHW and creek width is approximately 10 m. The creek empties into the northeastern side of the mid portion of Winyah Bay and directly drains pine forested upland and wetlands. Salinity ranges from 0 to 30 ppt. and tidal range is approximately 1m. The bottom is composed mostly of fine sediments and detritus. Georgetown, 5 km upstream from the Thousand Acre site and on the southern side of Winyah Bay, is the homeport for a number of heavy industries including a steel plant, paper mill, chemical plant, and a coal fired power plant. A public sewage treatment plant, which discharges into the bay, is also located in Georgetown.
- 6) Data collection period Included in annual metadata document.

Thousand Acre data collection began January 1, 1995. Debidue Creek sampling began March 5, 1998. Oyster Landing data collection began in 1995; however, it was not considered a SWMP site until 1996 when the collection site was switched from Caledonia to Oyster Landing. Clambank sampling began in February 1981 through June 1995; however, it was not considered a SWMP site until sampling resumed on August 17, 2001. All sampling is ongoing.

Deployment dates and times (in Eastern Standard Time) for 2014 follow:

Site: Clambank Creek

| Deploy Date | Time  | Retrieve Date | Time  |
|-------------|-------|---------------|-------|
| 12/20/2013  | 10:30 | 01/10/2014    | 12:15 |
| 01/10/2014  | 12:30 | 01/22/2014    | 13:30 |
| 01/22/2014  | 14:00 | 02/06/2014    | 13:45 |
| 02/06/2014  | 14:00 | 02/20/2014    | 12:00 |
| 02/20/2014  | 12:15 | 03/05/2014    | 11:15 |
| 03/05/2014  | 11:30 | 03/21/2014    | 09:15 |
| 03/21/2014  | 09:30 | 04/02/2014    | 09:15 |
| 04/02/2014  | 09:30 | 04/18/2014    | 09:00 |
| 04/18/2014  | 09:15 | 05/02/2014    | 10:30 |
| 05/02/2014  | 10:45 | 05/19/2014    | 11:00 |
| 05/19/2014  | 11:15 | 05/29/2014    | 08:45 |
| 05/29/2014  | 09:00 | 06/11/2014    | 18:00 |
| 06/11/2014  | 18:15 | 06/27/2014    | 08:15 |
| 06/27/2014  | 08:30 | 07/15/2014    | 12:15 |
| 07/15/2014  | 12:30 | 08/01/2014    | 14:00 |
| 08/01/2014  | 14:30 | 08/12/2014    | 08:45 |
| 08/12/2014  | 09:00 | 08/27/2014    | 08:45 |
| 08/27/2014  | 09:00 | 09/11/2014    | 10:15 |
| 09/11/2014  | 10:30 | 09/25/2014    | 09:30 |
| 09/25/2014  | 09:45 | 10/09/2014    | 09:00 |
| 10/09/2014  | 09:30 | 10/23/2014    | 09:00 |
| 10/23/2014  | 09:15 | 11/11/2014    | 10:15 |
| 11/11/2014  | 10:45 | 11/25/2014    | 10:00 |
| 11/25/2014  | 10:15 | 12/08/2014    | 09:30 |
| 12/08/2014  | 09:45 | 01/07/2015    | 13:45 |
|             |       |               |       |

# Site: **Debidue Creek**

| Deploy Date | Time  | Retrieve Date | Time  |
|-------------|-------|---------------|-------|
| 12/20/2013  | 10:00 | 01/10/2014    | 15:45 |
| 01/10/2014  | 16:00 | 01/22/2014    | 11:45 |
| 01/22/2014  | 12:15 | 02/06/2014    | 13:30 |
| 02/06/2014  | 13:45 | 02/20/2014    | 11:30 |
| 02/20/2014  | 11:45 | 03/15/2014    | 10:45 |
| 03/05/2014  | 11:00 | 03/21/2014    | 09:30 |
| 03/21/2014  | 09:45 | 04/02/2014    | 08:45 |
| 04/02/2014  | 09:15 | 04/18/2014    | 08:45 |
| 04/18/2014  | 09:00 | 05/02/2014    | 10:00 |
| 05/02/2014  | 10:15 | 05/19/2014    | 10:30 |
| 05/19/2014  | 11:00 | 05/29/2014    | 08:15 |
| 05/29/2014  | 08:45 | 06/11/2014    | 16:30 |
| 06/11/2014  | 17:00 | 06/13/2014    | 09:30 |
| 06/13/2014  | 11:45 | 06/27/2014    | 07:45 |
| 06/27/2014  | 08:15 | 07/14/2014    | 09:45 |
| 07/14/2014  | 10:15 | 08/01/2014    | 11:00 |
| 08/01/2014  | 11:30 | 08/12/2014    | 08:15 |
| 08/12/2014  | 08:45 | 08/27/2014    | 08:15 |
| 08/27/2014  | 08:45 | 09/11/2014    | 09:45 |
| 09/11/2014  | 10:15 | 09/25/2014    | 09:00 |
| 09/25/2014  | 09:30 | 10/09/2014    | 08:45 |
| 10/09/2014  | 09:00 | 10/23/2014    | 08:30 |
| 10/23/2014  | 09:00 | 11/11/2014    | 10:00 |
| 11/11/2014  | 10:15 | 11/25/2014    | 09:15 |

| 11/25/2014      | 09:30  | 12/08/2014    | 09:15 |
|-----------------|--------|---------------|-------|
| 12/08/2014      | 09:30  | 01/07/2015    | 09:45 |
|                 |        |               |       |
| Site: Oyster La | ınding |               |       |
| Deploy Date     | Time   | Retrieve Date | Time  |
| 12/20/2013      | 11:30  | 01/09/2014    | 13:45 |
| 01/09/2014      | 14:00  | 01/22/2014    | 12:00 |
| 01/22/2014      | 12:30  | 02/06/2014    | 14:54 |
| 02/06/2014      | 15:15  | 02/20/2014    | 13:30 |
| 02/20/2014      | 13:45  | 03/05/2014    | 12:15 |
| 03/05/2014      | 12:30  | 03/21/2014    | 10:00 |
| 03/21/2014      | 10:15  | 04/02/2014    | 10:15 |
| 04/02/2014      | 10:45  | 04/18/2014    | 10:30 |
| 04/18/2014      | 10:45  | 05/02/2014    | 11:45 |
| 05/02/2014      | 12:00  | 05/19/2014    | 12:15 |
| 05/19/2014      | 12:30  | 05/29/2014    | 09:45 |
| 05/29/2014      | 10:00  | 06/11/2014    | 18:15 |
| 06/11/2014      | 18:30  | 06/27/2014    | 09:45 |
| 06/27/2014      | 10:00  | 07/14/2014    | 11:00 |
| 07/14/2014      | 11:30  | 08/01/2014    | 11:15 |
| 08/01/2014      | 11:45  | 08/12/2014    | 09:45 |
| 08/12/2014      | 10:00  | 08/27/2014    | 09:45 |
| 08/27/2014      | 10:00  | 09/11/2014    | 11:15 |
| 09/11/2014      | 11:30  | 09/25/2014    | 10:30 |
| 09/25/2014      | 11:00  | 10/09/2014    | 10:15 |
| 10/09/2014      | 10:45  | 10/23/2014    | 10:15 |
| 10/23/2014      | 10:30  | 11/11/2014    | 11:30 |
| 11/11/2014      | 11:45  | 11/25/2014    | 10:15 |
| 11/25/2014      | 10:30  | 01/07/2015    | 11:00 |
| Site: Thousand  | d Acre |               |       |
| Deploy Date     | Time   | Retrieve Date | Time  |
| 12/20/2013      | 11:00  | 01/10/2014    | 12:45 |
| 01/10/2014      | 13:00  | 01/22/2014    | 14:15 |
| 01/22/2014      | 14:30  | 02/06/2014    | 14:15 |
| 02/06/2014      | 14:30  | 02/20/2014    | 12:45 |
| 02/20/2014      | 13:00  | 03/05/2014    | 11:45 |
| 03/05/2014      | 12:00  | 03/21/2014    | 11:00 |
| 03/21/2014      | 11:15  | 04/02/2014    | 09:45 |
| 04/02/2014      | 10:00  | 04/18/2014    | 09:30 |
| 04/18/2014      | 10:00  | 05/02/2014    | 14:30 |
| 05/09/2014      | 13:30  | 05/19/2014    | 11:30 |
| 05/19/2014      | 11:45  | 05/29/2014    | 09:15 |
| 05/29/2014      | 09:30  | 06/11/2014    | 17:15 |
| 06/11/2014      | 17:45  | 06/27/2014    | 09:00 |
| 06/27/2014      | 09:15  | 07/14/2014    | 10:30 |
| 07/14/2014      | 11:00  | 08/01/2014    | 09:45 |
| 08/01/2014      | 10:00  | 08/12/2014    | 09:15 |
| 08/12/2014      | 00.30  | 08/27/2014    | 00.15 |

08/12/2014

08/27/2014

09/11/2014

09/25/2014

09:30

09:30

11:00

10:15

08/27/2014

09/11/2014

09/25/2014

10/09/2014

09:15

10:30

10:00

09:45

| 10/09/2014 | 10:00 | 10/23/2014 | 09:30 |
|------------|-------|------------|-------|
| 10/23/2014 | 09:45 | 11/11/2014 | 11:00 |
| 11/11/2014 | 11:15 | 11/25/2014 | 09:45 |
| 11/25/2014 | 10:00 | 12/08/2014 | 10:00 |
| 12/08/2014 | 10:15 | 01/07/2014 |       |

# 7) Distribution

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and process the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

### Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: <a href="http://www.nerrsdata.org/">http://www.nerrsdata.org/</a>; accessed 12 October 2012.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in comma delimited format.

### 8) Associated researchers and projects

A water chemistry program is associated with the NIW core-monitoring program. Variables sampled include: chlorophyll, dissolved organic carbon, nitrate-nitrite, orthophosphate, and ammonia. (See documentation on the NIW WWW home page http://www.northinlet.sc.edu/ for further details). Thousand Acre is our permanent monitoring station for the NERR monitoring program, but Oyster Landing and Debidue Creek were also sampled beginning in 1998. Clambank Landing was added as a sampling station in August of 2001. These stations are also included in our NIW core-monitoring program. Susan Denham (Research Specialist) is responsible for the collection and management of this data.

The NERR weather station is also located at the Oyster Landing site. Air temperature and humidity, barometric pressure, solar radiation (total and PAR), wind speed and direction, and precipitation are measured. Tracy Buck (Research Specialist) is responsible for the collection and management of this data.

A study of the optical characteristics of dissolved organic matter (DOM) is currently being conducted at Oyster Landing in association with the NIW NERR water quality and water chemistry sampling. Absorbance from 250 - 450 nm are quantified on filtered sub-samples of water collected during (ISCO) diel nutrient sampling and used to determine carbon-normalized DOM absorbance and spectral slope. Study objectives include using DOM optical characteristics as a tracer for the input of aromatic-rich DOM from higher plant and terrestrially-derived DOM sources to estuarine waters. Dr. Erik Smith (NIW NERR Research Coordinator) is the principle investigators on this project.

# II. Physical Structure Descriptors

### 9) Sensor specifications

NIW NERR deployed YSI 6600EDS and EXO2 data sondes in 2014. 6600EDS sondes were deployed at CB, DC, and TA 1/1/2014 – 12/31/2014. Each 6600EDS sonde used a 6560 conductivity/temperature probe, a 6150 ROX optical dissolved oxygen probe, a 6589 pH probe, and a 6136 turbidity probe.

A 6600EDS with the same configuration as above was deployed at OL from 1/1/2014 – 11/25/2014 10:15, after which an EXO2 was deployed throughout the remainder of the year. The EXO2 deployed at OL used a 599090 central wiper, a 599870 conductivity/temperature sensor, a 599702 wiped pH sensor, a 599100 optical dissolved oxygen probe, a 599101 turbidity probe, a 599102 BGA PC probe, and a 599104 fDOM probe (data not submitted).

### YSI 6600 EDS-S Multi-parameter Water Quality Logger:

Parameter: Temperature

Units: Celsius (C)

Sensor Type: Thermistor

Model#: 6560 Range: -5 to 50 C Accuracy: +/- 0.15 Resolution: 0.01 C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: 4-electrode cell with autoranging

Model#: 6560

Range: 0 to 100 mS/cm

Accuracy:  $\pm$  - 0.5% of reading  $\pm$  0.001 mS/cm

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependant)

Parameter: Salinity

Units: parts per thousand (ppt)

Sensor Type: Calculated from conductivity and temperature

Range: 0 to 70 ppt

Accuracy: +/- 1.0% of reading pr 0.1 ppt, whichever is greater

Resolution: 0.01 ppt

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 6150 ROX

Range: 0 to 500% air saturation

Accuracy: 0-200% air saturation: +/- 1% of the reading or 1% air saturation, whichever is greater 200-500% air

saturation: +/- 15% or reading Resolution: 0.1% air saturation Units: milligrams/Liter (mg/L)

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 6150 ROX Range: 0 to 50 mg/L

Accuracy: 0-20 mg/L: +/-0.1 mg/l or 1% of the reading, whichever is greater

20 to 50 mg/L: +/- 15% of the reading

Resolution: 0.01 mg/L

Parameter: Non-vented Level - Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 30 ft (9.1 m) Accuracy: +/- 0.06 ft (0.018 m) Resolution: 0.001 ft (0.001 m)

Parameter: pH – bulb probe

Units: pH units

Sensor Type: Glass combination electrode

Model#: 6561 Range: 0 to 14 units Accuracy: +/- 0.2 units Resolution: 0.01 units

Parameter: Turbidity

Units: nephelometric turbidity units (NTU)

Sensor Type: Optical, 90 degree scatter, with mechanical cleaning

Model#: 6136

Range: 0 to 1000 NTU

Accuracy: +/- 2% of reading or 0.3 NTU (whichever is greater)

Resolution: 0.1 NTU

#### YSI EXO Sonde:

Parameter: Temperature

Units: Celsius (C)

Sensor Type: Thermistor Model#: 599870-01 Range: -5 to 50 C

Accuracy: -5 to 35: +/- 0.01, 35 to 50: +/- .005

Resolution: 0.01 C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: 4-electrode cell with autoranging

Model#: 599870-01 Range: 0 to 200 mS/cm

Accuracy: 0 to 100: +/- 0.5% of reading or 0.001 mS/cm; 100 to 200: +/- 1% of reading

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependant)

Parameter: Salinity

Units: practical salinity units (psu)/parts per thousand (ppt) Sensor Type: Calculated from conductivity and temperature

Range: 0 to 70 psu

Accuracy: +/- 1.0% of reading pr 0.1 ppt, whichever is greater

Resolution: 0.01 psu

Parameter: Dissolved Oxygen % saturation

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 599100-01

Range: 0 to 500% air saturation

Accuracy: 0-200% air saturation: +/- 1% of the reading or 1% air saturation, whichever is greater 200-500% air

saturation: +/- 5% or reading Resolution: 0.1% air saturation Parameter: Dissolved Oxygen mg/L (Calculated from % air saturation, temperature, and salinity)

Units: milligrams/Liter (mg/L)

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 599100-01 Range: 0 to 50 mg/L

Accuracy: 0-20 mg/L: +/-0.1 mg/l or 1% of the reading, whichever is greater

20 to 50 mg/L:  $\pm$ /- 5% of the reading

Resolution: 0.01 mg/L

Parameter: Non-vented Level - Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 33 ft (10 m) Accuracy: +/- 0.013 ft (0.04 m)

Resolution: 0.001 ft (0.001 m)

Parameter: pH Units: pH units

Sensor Type: Glass combination electrode Model#: 599701(guarded) or 599702(wiped)

Range: 0 to 14 units

Accuracy: +/- 0.01 units within +/- 10° of calibration temperature, +/- 0.02 units for entire temperature range

Resolution: 0.01 units

Parameter: Turbidity

Units: formazin nephelometric units (FNU) Sensor Type: Optical, 90 degree scatter

Model#: 599101-01 Range: 0 to 4000 FNU

Accuracy: 0 to 999 FNU: 0.3 FNU or +/-2% of reading (whichever is greater); 1000 to 4000 FNU +/-5% of

reading

Resolution: 0 to 999 FNU: 0.01 FNU, 1000 to 4000 FNU: 0.1 FNU

Parameter: Chlorophyll Units: micrograms/Liter Sensor Type: Optical probe Model#: 599102-01 Range: 0 to 400 ug/Liter

Accuracy: Dependent on methodology Resolution: 0.1 ug/L chl a, 0.1% FS

# Depth Qualifier:

The NERR System-Wide Monitoring Program utilizes YSI data sondes that can be equipped with either vented or non-vented depth/level sensors. Readings for both vented and non-vented sensors are automatically compensated for water density change due to variations in temperature and salinity; but for all non-vented depth measurements, changes in atmospheric pressure between calibrations appear as changes in water depth. The error is equal to approximately 1.03 cm for every 1 millibar change in atmospheric pressure, and is eliminated for vented sensors because they are vented to the atmosphere throughout the deployment time interval.

Beginning in 2006, NERR SWMP standard calibration protocol calls for all non-vented depth sensors to read 0 meters at a (local) barometric pressure of 1013.25 mb (760 mm/hg). To achieve this, each site calibrates their depth sensor with a depth offset number, which is calculated using the

actual atmospheric pressure at the time of calibration and the equation provided in the SWMP calibration sheet or digital calibration log. This offset procedure standardizes each depth calibration for the entire NERR System. If accurate atmospheric pressure data are available, non-vented sensor depth measurements at any NERR can be corrected.

In 2010, the CDMO began automatically correcting depth/level data for changes in barometric pressure as measured by the Reserve's associated meteorological station during data ingestion. These corrected depth/level data are reported as cDepth and cLevel, and are assigned QAQC flags and codes based on QAQC protocols. Please see sections 11 and 12 for QAQC flag and code definitions.

NOTE: older depth data cannot be corrected without verifying that the depth offset was in place and whether a vented or non-vented depth sensor was in use. No SWMP data prior to 2006 can be corrected using this method. The following equation is used for corrected depth/level data provided by the CDMO beginning in 2010: ((1013-BP)\*0.0102)+Depth/Level = cDepth/cLevel.

### Salinity Units Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by Reserves. While the 6600 series sondes report salinity in parts per thousand (ppt) units, the EXO sondes report practical salinity units (psu). These units are essentially the same and for SWMP purposes are understood to be equivalent, however psu is considered the more appropriate designation. Moving forward the NERR System will assign psu salinity units for all data regardless of sonde type.

# **Turbidity Qualifier:**

In 2013, EXO sondes were approved for SWMP use and began to be utilized by Reserves. While the 6600 series sondes report turbidity in nephelometric turbidity units (NTU), the EXO sondes use formazin nephelometric units (FNU). These units are essentially the same but indicate a difference in sensor methodology, for SWMP purposes they will be considered equivalent. Moving forward, the NERR System will use FNU/NTU as the designated units for all turbidity data regardless of sonde type. If turbidity units and sensor methodology are of concern, please see the Sensor Specifications portion of the metadata.

# **Chlorophyll Fluorescence Disclaimer:**

YSI chlorophyll sensors (6025 or 599102-01) are designed to serve as a proxy for chlorophyll concentrations in the field for monitoring applications and complement traditional lab extraction methods; therefore, there are accuracy limitations associated with the data that are detailed in the YSI manual including interference from other fluorescent species, differences in calibration method, and effects of cell structure, particle size, organism type, temperature, and light on sensor measurements.

### 10) Coded variable definitions – List the sampling station, sampling site code, and station code used in the data.

| Sampling station: | Sampling site code: | Station code: |
|-------------------|---------------------|---------------|
| Clambank Creek    | CB                  | niwcbwq       |
| Debidue Creek     | DC                  | niwdcwq       |
| Oyster Landing    | OL                  | niwolwq       |
| Thousand Acre     | TA                  | niwtawq       |

# 11) QAQC flag definitions – This section details the automated and secondary QAQC flag definitions. <u>Include</u> the following excerpt:

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F\_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is missing and above or below sensor range. All remaining data are then flagged 0, passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

# 12) QAQC code definitions – This section details the secondary QAQC Code definitions used in combination with the flags above. <u>Include the following excerpt:</u>

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an \* below) can be applied to the entire record in the F\_Record column.

#### Ger

| General Erro | ors                                                   |
|--------------|-------------------------------------------------------|
| GIC          | No instrument deployed due to ice                     |
| GIM          | Instrument malfunction                                |
| GIT          | Instrument recording error; recovered telemetry data  |
| GMC          | No instrument deployed due to maintenance/calibration |
| GNF          | Deployment tube clogged / no flow                     |
| GOW          | Out of water event                                    |
| GPF          | Power failure / low battery                           |
| GQR          | Data rejected due to QA/QC checks                     |
| GSM          | See metadata                                          |
| Corrected 2  | Depth/Level Data Codes                                |
| GCC          | Calculated with data that were corrected during QA/QC |

GCM Calculated value could not be determined due to missing data GCR Calculated value could not be determined due to rejected data

Calculated value suspect due to questionable data GCS

GCUCalculated value could not be determined due to unavailable data

#### Sensor Errors

Blocked optic SBO

Conductivity sensor failure SCF

Chlorophyll spike SCS Depth port frozen SDF

| SDC      | Sychoot due to come a disconnection                     |
|----------|---------------------------------------------------------|
| SDG      | Suspect due to sensor diagnostics                       |
| SDO      | DO suspect                                              |
| SDP      | DO membrane puncture                                    |
| SIC      | Incorrect calibration / contaminated standard           |
| SNV      | Negative value                                          |
| SOW      | Sensor out of water                                     |
| SPC      | Post calibration out of range                           |
| SQR      | Data rejected due to QAQC checks                        |
| SSD      | Sensor drift                                            |
| SSM      | Sensor malfunction                                      |
| SSR      | Sensor removed / not deployed                           |
| STF      | Catastrophic temperature sensor failure                 |
| STS      | Turbidity spike                                         |
| SWM      | Wiper malfunction / loss                                |
| Comments |                                                         |
| CAB*     | Algal bloom                                             |
| CAF      | Acceptable calibration/accuracy error of sensor         |
| CAP      | Depth sensor in water, affected by atmospheric pressure |
| CBF      | Biofouling                                              |
| CCU      | Cause unknown                                           |
| CDA*     | DO hypoxia (<3 mg/L)                                    |
| CDB*     | Disturbed bottom                                        |
| CDF      | Data appear to fit conditions                           |
| CFK*     | Fish kill                                               |
| CIP*     | Surface ice present at sample station                   |
| CLT*     | Low tide                                                |
| CMC*     | In field maintenance/cleaning                           |
| CMD*     | Mud in probe guard                                      |
| CND      | New deployment begins                                   |
| CRE*     | Significant rain event                                  |
| CSM*     | See metadata                                            |
| CTS      | Turbidity spike                                         |
| CVT*     | Possible vandalism/tampering                            |
| CWD*     | Data collected at wrong depth                           |
| CWE*     | Significant weather event                               |
|          | <del>-</del>                                            |

# 13) Post deployment information

# Clambank Creek

| Post Cal Date | Sp.Con.    | Salinity | рΗ   | рΗ    | Depth | Turbidity | BP      | ODO%         |
|---------------|------------|----------|------|-------|-------|-----------|---------|--------------|
|               | (0  mS/cm) | (0 psu)  | (7)  | (10)  | -     | (0 NTU)   | (mm Hg) | (% air sat.) |
| 01/10/2014    | 0.007      | 0.00     | 7.12 | 10.05 | 0.085 | -1.6      | 765.9   | 101.3        |
| 01/22/2014    | 0.002      | 0.00     | 7.11 | 9.93  | 0.211 | 0.6       | 775.5   | 102.6        |
| 02/06/2014    | 0.039      | 0.02     | 7.05 | 10.13 | 0.201 | 0.6       | 770.2   | 101.7        |
| 02/20/2014    | 0.011      | 0.00     | 7.03 | 10.06 | 0.033 | 0.2       | 762.8   | 100.6        |
| 03/05/2014    | 0.017      | 0.01     | 7.00 | 10.01 | 0.055 | 1.0       | 764.2   | 99.8         |
| 03/21/2014    | 0.039      | 0.02     | 7.02 | 10.00 | 0.066 | 0.1       | 763.6   | 101.8        |
| 04/02/2014    | 0.027      | 0.01     | 7.06 | 10.02 | 0.078 | -0.1      | 762.5   | 101.4        |
| 04/18/2014    | 9.842*     | 5.55     | 6.98 | 9.97  | 0.084 | 0.1       | 766.6   | 100.7        |
| 05/02/2014    | 10.11*     | 5.71     | 7.08 | 10.04 | 0.008 | 0.3       | 760.7   | 101.8        |
| 05/19/2014    | 0.124      | 0.06     | 7.13 | 10.03 | 0.090 | -0.3      | 767.6   | 101.5        |
| 05/29/2014    | 10.10*     | 5.71     | 6.99 | 9.90  | 0.025 | 0.5       | 762.2   | 100.1        |

| 10.49*  | 5.94                                                                                                     | 6.96                                                                                                                                                       | 9.87                                                                                                                                                                                                                                                                                                                                                                                 | -0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 757.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.970*  | 5.63                                                                                                     | 7.13                                                                                                                                                       | 10.14                                                                                                                                                                                                                                                                                                                                                                                | -0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 761.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.296*  | 5.22                                                                                                     | 7.19                                                                                                                                                       | 8.75                                                                                                                                                                                                                                                                                                                                                                                 | -0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 757.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12.09** | 6.93                                                                                                     | 7.15                                                                                                                                                       | 9.85                                                                                                                                                                                                                                                                                                                                                                                 | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 762.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.787*  | 5.52                                                                                                     | 7.26                                                                                                                                                       | 10.18                                                                                                                                                                                                                                                                                                                                                                                | -0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 758.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9.463*  | 5.32                                                                                                     | 7.23                                                                                                                                                       | 9.84                                                                                                                                                                                                                                                                                                                                                                                 | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 762.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9.272*  | 5.21                                                                                                     | 7.25                                                                                                                                                       | 9.07                                                                                                                                                                                                                                                                                                                                                                                 | 0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 763.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.376*  | 5.27                                                                                                     | 7.15                                                                                                                                                       | 9.73                                                                                                                                                                                                                                                                                                                                                                                 | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 764.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| n/a     |                                                                                                          |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.444*  | 5.31                                                                                                     | 7.10                                                                                                                                                       | 9.84                                                                                                                                                                                                                                                                                                                                                                                 | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 761.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.02*  | 5.66                                                                                                     | 7.00                                                                                                                                                       | 9.89                                                                                                                                                                                                                                                                                                                                                                                 | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 760.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.691*  | 5.47                                                                                                     | 7.16                                                                                                                                                       | 10.10                                                                                                                                                                                                                                                                                                                                                                                | 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 766.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.178*  | 5.16                                                                                                     | 7.44                                                                                                                                                       | 9.16                                                                                                                                                                                                                                                                                                                                                                                 | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 764.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 9.970*<br>9.296*<br>12.09**<br>9.787*<br>9.463*<br>9.272*<br>9.376*<br>n/a<br>9.444*<br>10.02*<br>9.691* | 9.970* 5.63<br>9.296* 5.22<br>12.09** 6.93<br>9.787* 5.52<br>9.463* 5.32<br>9.272* 5.21<br>9.376* 5.27<br>n/a<br>9.444* 5.31<br>10.02* 5.66<br>9.691* 5.47 | 9.970*       5.63       7.13         9.296*       5.22       7.19         12.09**       6.93       7.15         9.787*       5.52       7.26         9.463*       5.32       7.23         9.272*       5.21       7.25         9.376*       5.27       7.15         n/a       9.444*       5.31       7.10         10.02*       5.66       7.00         9.691*       5.47       7.16 | 9.970*       5.63       7.13       10.14         9.296*       5.22       7.19       8.75         12.09**       6.93       7.15       9.85         9.787*       5.52       7.26       10.18         9.463*       5.32       7.23       9.84         9.272*       5.21       7.25       9.07         9.376*       5.27       7.15       9.73         n/a       9.444*       5.31       7.10       9.84         10.02*       5.66       7.00       9.89         9.691*       5.47       7.16       10.10 | 9.970*       5.63       7.13       10.14       -0.020         9.296*       5.22       7.19       8.75       -0.155         12.09**       6.93       7.15       9.85       0.063         9.787*       5.52       7.26       10.18       -0.009         9.463*       5.32       7.23       9.84       0.004         9.272*       5.21       7.25       9.07       0.106         9.376*       5.27       7.15       9.73       0.073         n/a       9.444*       5.31       7.10       9.84       0.064         10.02*       5.66       7.00       9.89       0.017         9.691*       5.47       7.16       10.10       0.067 | 9.970*       5.63       7.13       10.14       -0.020       -0.1         9.296*       5.22       7.19       8.75       -0.155       -1.2         12.09**       6.93       7.15       9.85       0.063       0.9         9.787*       5.52       7.26       10.18       -0.009       -0.3         9.463*       5.32       7.23       9.84       0.004       0.5         9.272*       5.21       7.25       9.07       0.106       1.4         9.376*       5.27       7.15       9.73       0.073       5.1         n/a       9.444*       5.31       7.10       9.84       0.064       0.2         10.02*       5.66       7.00       9.89       0.017       1.9         9.691*       5.47       7.16       10.10       0.067       -1.6 | 9.970*       5.63       7.13       10.14       -0.020       -0.1       761.3         9.296*       5.22       7.19       8.75       -0.155       -1.2       757.1         12.09**       6.93       7.15       9.85       0.063       0.9       762.1         9.787*       5.52       7.26       10.18       -0.009       -0.3       758.1         9.463*       5.32       7.23       9.84       0.004       0.5       762.4         9.272*       5.21       7.25       9.07       0.106       1.4       763.6         9.376*       5.27       7.15       9.73       0.073       5.1       764.9         n/a       9.444*       5.31       7.10       9.84       0.064       0.2       761.1         10.02*       5.66       7.00       9.89       0.017       1.9       760.9         9.691*       5.47       7.16       10.10       0.067       -1.6       766.0 |

# **Debidue Creek**

| Post Cal Date |             | Salinity    | рΗ      | рН      | Depth  | Turbidity | BP      | ODO%         |
|---------------|-------------|-------------|---------|---------|--------|-----------|---------|--------------|
|               | (0  mS/cm)  | (0 psu)     | (7)     | (10)    |        | (0 NTU)   | (mm Hg) | (% air sat.) |
| 01/10/2014    | 0.043       | 0.02        | 7.00    | 9.88    | 0.063  | -1.0      | 765.2   | 100.3        |
| 01/22/2014    | 0.007       | 0.00        | 6.96    | 9.82    | 0.200  | -3.1      | 776.2   | 103.0        |
| 02/06/2014    | 0.008       | 0.00        | 7.00    | 10.01   | 0.147  | 0.9       | 769.7   | 101.3        |
| 02/20/2014    | 0.006       | 0.00        | 7.03    | 10.04   | -0.043 | 0.2       | 762.5   | 100.8        |
| 03/15/2014    | 0.016       | 0.01        | 6.99    | 10.03   | 0.042  | -0.3      | 764.2   | 100.1        |
| 03/21/2014    | 0.009       | 0.00        | 7.04    | 9.99    | 0.096  | 0.5       | 764.6   | 101.2        |
| 04/02/2014    | 0.019       | 0.01        | 7.07    | 9.96    | 0.044  | -0.1      | 762.8   | 101.5        |
| 04/18/2014    | 9.729*      | 5.48        | 7.03    | 9.95    | 0.070  | 0.0       | 767.0   | 100.3        |
| 05/02/2014    | 10.12*      |             | 7.07    | 9.98    | 0.008  | 0.2       | 760.7   | 100.7        |
| 05/19/2014    | 0.067       | 0.03        | 7.18    | 9.82    | 0.068  | 0.1       | 767.6   | 100.7        |
| 05/29/2014    | 9.814*      | 5.53        | 7.04    | 9.84    | 0.197  | 1241.3    | 762.3   | 99.9         |
| 06/11/2014    | 9.153*      | 5.14        | 7.30    | 9.70    | -0.042 | 27.1      | 758.9   | 99.3         |
| 06/13/2014    | unable to p | ost-cal due | to brol | ken con | nector |           |         |              |
| 06/27/2014    | 9.884*      | 5.58        | 7.14    | 9.81    | 0.014  | -0.1      | 761.5   | 98.6         |
| 07/14/2014    | 8.673*      | 4.85        | 7.10    | 9.70    | -0.020 | 6.1       | 757.1   | 99.5         |
| 08/01/2014    | 10.65**     | 6.07        | 7.04    | 9.53    | -0.019 | 13.9      | 762.3   | 100.6        |
| 08/12/2014    | 9.783*      | 5.52        | 7.18    | 10.09   | 0.010  | 12.3      | 758.3   | 99.5         |
| 08/27/2014    | 7.158*      | 3.95        | 7.38    | 9.72    | -0.042 | 0.1       | 760.8   | 99.8         |
| 09/11/2014    | 9.441*      | 5.31        | 7.04    | 9.94    | 0.020  | 0.0       | 762.5   | 103.7        |
| 09/25/2014    | 8.358*      | 4.66        | 6.84    | 9.37    | 0.057  | 9.5       | 763.9   | 100.8        |
| 10/09/2014    | 8.894*      | 4.98        | 7.18    | 9.85    | 0.070  | 0.1       | 764.9   | 100.9        |
| 10/23/2014    | n/a         |             |         |         |        |           |         |              |
| 11/11/2014    | 9.504*      | 5.35        | 7.06    | 9.94    | -0.027 | 0.0       | 757.6   | 100.4        |
| 11/25/2014    | 9.862*      | 5.56        | 7.13    | 10.01   | 0.212  | 0.2       | 761.4   | 101.9        |
| 12/08/2014    | 9.788*      | 5.53        | 6.95    | 9.90    | 0.076  | 0.2       | 766.1   | 101.4        |
| 01/07/2015    | 9.434*      | 5.31        | 7.16    | 9.96    | 0.091  | -0.2      | 764.0   | 101.2        |
|               |             |             |         |         |        |           |         |              |

# **Oyster Landing**

<sup>\*</sup>in 10 mS/cm YSI conductivity standard \*\*in 12.856 mS/cm Hach conductivity standard

<sup>\*</sup>in 10 mS/cm YSI conductivity standard
\*\*in 12.856 mS/cm Hach conductivity standard

| Post Cal Date | Sp.Con.    | Salinity | рΗ   | рΗ    | Depth  | Turbidity | BP      | ODO%         |
|---------------|------------|----------|------|-------|--------|-----------|---------|--------------|
|               | (0  mS/cm) | (0 psu)  | (7)  | (10)  | •      | (0 NTU)   | (mm Hg) | (% air sat.) |
| 01/09/2014    | 10.08*     | 5.71     | 7.12 | 10.09 | 0.170  | 0.0       | 772.4   | 102.7        |
| 01/22/2014    | 0.024      | 0.01     | 7.01 | 9.97  | 0.213  | 18.1      | 776.2   | 102.6        |
| 02/06/2014    | 0.010      | 0.00     | 7.03 | 10.01 | 0.141  | 0.3       | 770.1   | 101.7        |
| 02/20/2014    | 0.039      | 0.02     | 7.06 | 10.09 | 0.016  | 0.0       | 762.8   | 100.7        |
| 03/05/2014    | 0.012      | 0.00     | 7.07 | 10.07 | 0.052  | -1.3      | 764.2   | 100.4        |
| 03/21/2014    | 0.010      | 0.00     | 7.07 | 10.06 | 0.073  | -0.2      | 764.6   | 101.2        |
| 04/02/2014    | 0.027      | 0.01     | 7.00 | 9.99  | 0.037  | 0.3       | 762.5   | 104.3        |
| 04/18/2014    | 10.03*     | 5.67     | 7.09 | 10.03 | 0.093  | -0.2      | 766.6   | 100.7        |
| 05/02/2014    | 10.01*     | 5.65     | 7.01 | 9.97  | 0.008  | -0.9      | 760.7   | 101.2        |
| 05/19/2014    | 0.076      | 0.03     | 7.26 | 9.99  | 0.107  | 0.2       | 767.4   | 99.6         |
| 05/29/2014    | 9.794*     | 5.52     | 7.21 | 10.19 | 0.024  | -0.5      | 761.9   | 100.2        |
| 06/11/2014    | 10.06*     | 5.69     | 6.90 | 9.99  | -0.031 | 6.4       | 757.6   | 98.7         |
| 06/27/2014    | 9.664*     | 5.45     | 7.19 | 10.21 | 0.022  | 16.6      | 761.1   | 101.0        |
| 07/14/2014    | 9.555*     | 5.38     | 7.17 | 10.06 | -0.030 | -1.0      | 757.7   | 98.9         |
| 08/01/2014    | 12.56**    | 7.22     | 7.17 | 10.03 | 0.047  | 0.4       | 762.7   | 100.1        |
| 08/12/2014    | 10.06*     | 5.68     | 7.20 | 10.27 | -0.014 | 0.5       | 758.4   | 99.1         |
| 08/27/2014    | 9.967*     | 5.63     | 7.07 | 9.95  | -0.003 | -0.6      | 760.6   | 100.0        |
| 09/11/2014    | 9.753*     | 5.50     | 7.02 | 9.94  | 0.033  | 0.2       | 762.4   | 100.2        |
| 09/25/2014    | 9.914*     | 5.60     | 7.17 | 10.14 | 0.048  | -1.3      | 763.5   | 100.2        |
| 10/09/2014    | 9.861*     | 5.56     | 7.04 | 9.99  | 0.069  | 0.5       | 765.0   | 100.8        |
| 10/23/2014    | n/a        |          |      |       |        |           |         |              |
| 11/11/2014    | 9.942*     | 5.61     | 7.01 | 9.98  | -0.006 | -0.2      | 757.7   | 99.3         |
| 11/25/2014    | 9.849*     |          | 7.14 | 10.04 | 0.019  | 1.0       | 761.2   | 101.3        |
| 01/07/2015    | 9.886*     | 5.59     | 7.11 | 10.12 | 0.196  | -0.07     | 774.4   | 102.4        |
|               |            |          |      |       |        |           |         |              |

<sup>\*</sup>in 10 mS/cm YSI conductivity standard
\*\*in 12.856 mS/cm Hach conductivity standard

# Thousand Acre

| Post Cal Date | Sp.Con.    | Salinity | рΗ   | рΗ    | Depth  | Turbidity | BP      | ODO%         |
|---------------|------------|----------|------|-------|--------|-----------|---------|--------------|
|               | (0  mS/cm) | (0 psu)  | (7)  | (10)  | •      | (0 NTU)   | (mm Hg) | (% air sat.) |
| 01/10/2014    | 0.012      | 0.00     | 7.28 | 10.33 | 0.080  | -1.3      | 765.9   | 102.1        |
| 01/22/2014    | 0.016      | 0.01     | 7.02 | 9.84  | 0.205  | -2.5      | 775.4   | 104.5        |
| 02/06/2014    | 0.013      | 0.00     | 7.07 | 10.09 | 0.095  | -0.8      | 770.1   | 103.5        |
| 02/20/2014    | 0.043      | 0.02     | 7.14 | 10.16 | 0.038  | -0.2      | 762.8   | 101.2        |
| 03/05/2014    | 0.013      | 0.00     | 7.01 | 10.04 | 0.041  | -1.7      | 764.2   | 102.0        |
| 03/21/2014    | 0.020      | 0.01     | 7.07 | 10.05 | 0.063  | -0.1      | 764.6   | 101.6        |
| 04/02/2014    | 0.008      | 0.00     | 7.04 | 10.03 | 0.031  | -0.1      | 762.5   | 101.0        |
| 04/18/2014    | 10.22*     | 5.78     | 7.02 | 9.98  | 0.081  | -0.8      | 766.0   | 101.6        |
| 05/02/2014    | 10.36*     | 5.87     | 7.08 | 9.98  | 0.008  | 1.0       | 760.7   | 100.9        |
| 05/19/2014    | 0.021      | 0.01     | 7.01 | 9.89  | 0.098  | -0.4      | 767.4   | 55.4         |
| 05/29/2014    | 9.939*     | 5.61     | 7.05 | 10.03 | 0.028  | 0.3       | 762.0   | 100.0        |
| 06/11/2014    | 9.373*     | 5.27     | 7.02 | 9.79  | -0.038 | 0.6       | 757.4   | 101.6        |
| 06/27/2014    | 6.199*     | 3.38     | 7.25 | 9.48  | 0.009  | 2.3       | 761.1   | 100.0        |
| 07/14/2014    | 7.349*     | 4.05     | 7.06 | 9.84  | -0.007 | 2.1       | 757.6   | 100.4        |
| 08/01/2014    | 12.37**    | 7.10     | 7.18 | 7.93  | 0.047  | 1.0       | 762.2   | 100.8        |
| 08/12/2014    | 9.659*     | 5.41     | 7.11 | 9.74  | 0.222  | -0.6      | 758.1   | 98.8         |
| 08/27/2014    | 8.020*     | 4.46     | 7.56 | 9.34  | -0.017 | -0.1      | 760.4   | 100.3        |
| 09/11/2014    | 9.778*     | 5.51     | 7.37 | 8.54  | -0.085 | -0.2      | 762.4   | 101.4        |

| 09/25/2014 | 9.825* | 5.54 | 7.16 | 9.64 | 0.042 | 0.4  | 763.5 | 100.5 |
|------------|--------|------|------|------|-------|------|-------|-------|
| 10/09/2014 | 9.835* | 5.55 | 7.16 | 9.71 | 0.057 | 2.4  | 764.9 | 101.9 |
| 10/23/2014 | n/a    |      |      |      |       |      |       |       |
| 11/11/2014 | 9.867* | 5.56 | 7.01 | 9.96 | 0.034 | 0.0  | 761.1 | 101.4 |
| 11/25/2014 | 9.942* | 5.61 | 7.06 | 9.98 | 0.028 | -1.4 | 760.9 | 100.6 |
| 12/08/2014 | 9.990* | 5.65 | 7.03 | 9.98 | 0.041 | 1.4  | 766.0 | 101.2 |
| 01/07/2015 |        |      |      |      |       |      |       |       |

<sup>\*</sup>in 10 mS/cm YSI conductivity standard

- 14) Other remarks/notes Use this section for further documentation of the research data set. Include any additional notes regarding the data set in general, circumstances not covered by the flags and comment codes, or specific data that were coded with the CSM "See Metadata" comment code. You may include the metadata worksheets here if so desired. You may also include information on major storms or precipitation events that could have affected the data recorded at the sample sites. <u>Include the following excerpt:</u>
  - A) Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.
  - B) Oyster Landing 3/27/2014 13:30 infield maintenance was going on, the tube was being replaced.
  - C) Oyster Landing 4/2/2014 9:30 the sonde was deployed at 9:30; however the sonde failed to begin collecting data until 23:30. The sonde was fully deployed and at the correct depth starting 4/2/2014 9:30.
  - D) Thousand Acre 4/29/2014 20:00 to 5/3/2014 14:30 the sonde tube had separated from the bridge and settled to the bottom of the creek. Data should be used with caution.
  - E) Clambank Turbidity data from 7/15 20:15 to 8/1 14:00 may have been affected by fouling growing in the tube that was dislodged after the sonde deployed during this time was retrieved.
  - F) Thousand Acre 8/12/2014 9:30-9:45 data is marked 1 GSM CWD. The sonde appears to have gotten hung up in the tube at deployment, however it settled and is at the correct depth for the remainder of the deployment.
  - G) Oyster Landing On 11/25/2014 at 10:30 we began deploying an EXO2 datalogger at Oyster Landing. See Section 9 for details on changes in probe configuration and specifications for this instrument.
  - H) Clambank Landing Note that several periods of data were coded as <0> (CSM). This site is more prone to reductions in salinity and conductivity from the movement of Winyah Bay water into the North Inlet system than from rainfall events. Movement of low salinity Winyah Bay water into the western portion of the North Inlet system can occur during short yet strong westerly wind events or prolonged periods of westerly winds. Therefore, periods of reduced specific conductity and salinity for Clambank Landing were flagged as CSM rather than CRE (significant rain event). A comparison of the water quality data from Clambank Landing to

<sup>\*\*</sup>in 12.856 mS/cm Hach conductivity standard

- precipitation, wind speed and wind direction data from the Oyster Landing MET station will give an indication as to the origin of the fresh water affecting salinity at this site.
- I) Debidue Creek and Oyster Landing Note that several periods of specific conductivity and salinity data were coded as <0> (CSM). At times, these sites can experience reductions in salinity and conductivity from the movement of Winyah Bay water into the North Inlet system. Movement of low salinity Winyah Bay water into the western portion of the North Inlet system can occur during short yet strong westerly wind events or prolonged periods of westerly winds. Therefore data during periods of reduced specific conductity and salinity that could not be correlated with rainfall were flagged as CSM rather than CRE (significant rain event). A comparison of the water quality data from Clambank Landing to precipitation, wind speed and wind direction data from the Oyster Landing MET station will give an indication as to the origin of the fresh water affecting salinity at these sites.
- J) Periods in which rainfall had obvious effects on the data are coded as a significant rainfall event or CRE. The effects of significant rainfall events can sometimes be seen for an extended period after the actual rainfall event. Most often this is seen as large swings in salinity from seawater strength with a flooding/high tide to significantly lower salinities with the ebbing/low tide. In these instances, only the first period in which the effect is obvious is coded as CRE.
- K) The following are daily rainfall totals > 2.54 mm for the year of 2014 recorded at the NIWB-NERR weather station at Oyster Landing. Note that significant rainfall amounts can affect all measured parameters, most noticeably salinity, turbidity and pH. Please note that tropical events are associated with heavy winds that may also affect tidal depth.

| Date       | Total Daily |
|------------|-------------|
|            | Precip (mm) |
| 01/01/2014 | 7.37        |
| 01/02/2014 | 17.27       |
| 01/11/2014 | 9.14        |
| 01/14/2014 | 10.92       |
| 01/31/2014 | 8.89        |
| 02/05/2014 | 3.56        |
| 02/08/2014 | 3.30        |
| 02/11/2014 | 9.65        |
| 02/12/2014 | 9.14        |
| 02/15/2014 | 4.06        |
| 02/21/2014 | 2.79        |
| 02/26/2014 | 10.67       |
| 03/03/2014 | 9.40        |
| 03/05/2014 | 4.06        |
| 03/06/2014 | 25.40       |
| 03/07/2014 | 7.87        |
| 03/16/2014 | 28.96       |
| 03/17/2014 | 9.14        |
| 03/25/2014 | 11.18       |
| 03/28/2014 | 12.19       |
| 03/29/2014 | 67.56       |
| 04/07/2014 | 13.46       |

| 04/08/2014 | 3.05  |
|------------|-------|
| 04/14/2014 | 3.30  |
| 04/15/2014 | 5.08  |
| 04/18/2014 | 37.34 |
| 04/19/2014 | 37.08 |
| 04/20/2014 | 13.46 |
| 04/30/2014 | 16.51 |
| 05/11/2014 | 4.32  |
| 05/15/2014 | 29.46 |
| 05/23/2014 | 26.16 |
| 06/06/2014 | 14.99 |
| 06/13/2014 | 3.05  |
| 06/22/2014 | 8.89  |
| 06/24/2014 | 14.99 |
| 06/28/2014 | 13.46 |
| 07/03/2014 | 28.19 |
| 07/08/2014 | 19.30 |
| 07/15/2014 | 6.86  |
| 07/16/2014 | 13.72 |
| 07/20/2014 | 16.51 |
| 07/21/2014 | 5.33  |
| 07/23/2014 | 4.57  |
| 07/25/2014 | 12.70 |
| 07/28/2014 | 6.10  |
| 07/31/2014 | 48.26 |
| 08/02/2014 | 5.59  |
| 08/03/2014 | 26.42 |
| 08/09/2014 | 11.94 |
| 08/10/2014 | 3.81  |
| 08/11/2014 | 50.80 |
| 08/12/2014 | 5.84  |
| 08/16/2014 | 8.38  |
| 08/18/2014 | 8.13  |
| 08/19/2014 | 2.54  |
| 08/20/2014 | 3.81  |
| 09/06/2014 | 8.64  |
| 09/08/2014 | 66.55 |
| 09/13/2014 | 13.97 |
| 09/19/2014 | 10.41 |
| 09/22/2014 | 3.30  |
| 09/23/2014 | 19.30 |
| 09/29/2014 | 10.92 |
| 10/14/2014 | 5.59  |
| 10/15/2014 | 6.86  |
| 11/01/2014 | 6.35  |

| 11/16/2 | 2014 | 4.06  |
|---------|------|-------|
| 11/23/  | 2014 | 28.96 |
| 11/25/  | 2014 | 18.03 |
| 11/26/2 | 2014 | 4.06  |
| 12/06/2 | 2014 | 3.81  |
| 12/21/2 | 2014 | 3.05  |
| 12/22/  | 2014 | 12.95 |
| 12/23/  | 2014 | 16.76 |
| 12/24/  | 2014 | 46.74 |
| 12/29/2 | 2014 | 3.56  |
|         |      |       |