# Old Woman Creek (OWC) NERR Water Quality Metadata

January – December, 2023 Latest Update: July 22, 2025

### I. Data Set and Research Descriptors

### 1) Principal investigator(s) and contact persons -

Steven E. McMurray – Research Coordinator Steven.McMurray@dnr.ohio.gov

Jacob A. Cianci-Gaskill – SWMP Coordinator Jacob.Cianci-Gaskill@dnr.ohio.gov

Old Woman Creek NERR 2514 Cleveland Road East Huron, Ohio 44839 Phone: (419) 433-4601

Jade Bolinger – Water Quality Technician

### 2) Entry verification -

Deployment data were directly uploaded from a YSI EXO sonde to a personal computer with Windows 7 or newer operating system. The data were graphed and visually checked for any obvious outliers. Notes were made of any unusual data or faulty probes. Files are exported from KOR Software in a comma separated file (CSV) and uploaded to the CDMO where they undergo automated primary QAQC; automated Depth/Level corrections for changes in barometric pressure (cDepth or cLevel parameters); and become part of the CDMO's online provisional database.

All pre- and post-deployment data are removed from the file prior to upload. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the Reserve for secondary QAQC where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, remove any overlapping deployment data, append files, and export the resulting data file for upload to the CDMO. Upload after secondary QAQC results in ingestion into the database as provisional plus data, recalculation of cDepth or cLevel parameters, and finally tertiary QAQC by the CDMO and assimilation into the CDMO's authoritative online database. Where deployment overlap occurs between files, the data produced by the newly calibrated sonde is generally accepted as being the most accurate. For more information on QAQC flags and codes, see Sections 11 and 12. Steven McMurray and Jacob Cianci-Gaskill were responsible for data QAQC in 2023.

# 3) Research objectives –

Measurements are taken every 15 minutes over four- to six-week periods at five sites within Old Woman Creek. Four sites are in the estuary proper: one in the upper reaches at Darrow Road (DR); one at the point where Old Woman Creek opens up to a wetland (RR); one near the mouth, south of State Route 6 (Wetland Mouth; WM); and the fourth upstream from the WM site (Lower Estuary; OL). The final site (Berlin Road; BR) is upstream of the first riffle zone above the estuary in Old Woman Creek proper. The purpose of this monitoring program is to document the role of this Great Lakes' estuary in the Lake Erie ecosystem, particularly the estuary's role in mitigating storm flow that passes through it. The role of the OL site is to document the degree of intrusion by lake water during northerly winds and subsequent seiche events.

### 4) Research methods -

The 2023 water quality monitoring program began on 03/07/2023 at BR, DR, OL, and WM sites and continued through the current reporting period. Water quality monitoring began at RR on 06/07/2023 when the site was installed and continued through the reporting period.

YSI EXO sondes (models 2 & 3) were used at all five sites throughout this period. Sondes at BR, DR, and WM are deployed in 10 cm diameter PVC pipes, the first and last of which is clamped to a 2.4 m long metal post that had been driven into the sediment. The sonde trap at site DR is not clamped to a 2.4 m metal post, but is instead suspended from the north side of the road bridge by metal chain. Each pipe has 4 vertical slits 2 cm wide drilled into it spanning the area of the probe guard on the sonde to ensure that the probes have direct contact with the surrounding waters. The sonde trap at site RR is an aluminum tube with 2.5 cm diameter holes drilled around the bottom 30 cm of the tube to ensure proper water flow around the sonde sensors. The tube is bolted onto the upstream, eastern abutment of an overpassing railroad bridge, extending into the water at a vertical, fixed position. The distance from the tube to the abutment is 10 cm.

The OL sonde is deployed on a deeply embedded steel pipe with a steel trap that has four vertical slits matching in length and width to the EXO sonde guard slits. Additional field readings for dissolved oxygen, pH, temperature, turbidity, and specific conductance were taken using an EXO sonde when the instruments were changed at each site (see the Other Remarks Section). The sondes were cleaned after two to three weeks of deployment to remove fouling and replaced in the field after a calendar month of deployment not to exceed 45 days. The data were retrieved from each sonde and underwent post deployment parameter checks. Each sonde was recalibrated (according to the directions in the YSI Operations Manual) before being returned to the field. Conductivity, turbidity (2-point calibration using distilled water and a YSI standard), and pH (2 point-calibration) were calibrated using commercial standards. These standards were prepared prior to each deployment. Sonde readings were checked against these standards within 24 hours of retrieval. Sondes at all sites have non-vented depth sensors and optical DO sensors. Calibration logs provide sensor information.

In October 2014, the Data Management Committee determined that barometric pressure readings used for producing the depth offset during water quality data sonde calibration should be taken from the same weather station where barometric pressure is used to correct depth/level for the cDepth/cLevel parameters. This is a requirement for NERRS Reserves (like Old Woman Creek) where that weather station is located significantly above sea level. Please be aware that this protocol began in March 2015, at the start of the sampling season and has been adhered to in subsequent years. Barometric pressure for sonde depth calibration was taken from the owcowmet weather station until November 2020, and with a Kestrel 4000 (not corrected for altitude) from within the lab starting December 2020 until June 2021 due to intermittent data gaps of the weather station. After June 2021, barometric pressure for sonde depth calibration was taken from the owcowmet weather station.

A Sutron Sat-Link2 transmitter was installed at site OL during October 2006. This system stopped transmitting data in 2017 and was replaced with a WaterLog Storm 3 datalogger in February 2021, which transmits data to the NOAA Goes satellite NESDIS ID# 3B02849A. WaterLog Storm 3 dataloggers have also been used at sites DR and WM since installation in September 2017 and at site RR since installation in 2023. These systems transmit data to the NOAA Goes satellites NESDIS ID# 3B0009A8, 3B001ADE, and 3B010B52, respectively. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen-minute data sampling intervals. Upon receipt by the CDMO, the data undergo the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at http://cdmo.baruch.sc.edu.

Old Woman Creek National Estuarine Research Reserve is located on the southern shore of Lake Erie, east of the city of Huron, Ohio (Latitude 41° 23' N; Longitude 82° 33' W). Long-term water quality has occurred at six sites within the stream, one of which has been decommissioned in 2007 (Table 1). Other than non-point source pollutants coming into the estuary from these agricultural practices and from the town of Berlin Heights, there are no other major pollution sources in the estuary. Water levels in the estuary and in the creek are extremely variable, with changes occurring daily, seasonally, and annually due to changing lake levels, seiches on the lake, storm runoff, and the mouth closing and opening through the year. Changes to the status of the mouth (open versus closed) for 2023 are included in the comments section.

Table 1: Location of water quality stations that are part of the Old Woman Creek System-Wide Monitoring Program (SWMP). Station Code refers to seven-letter site notation used by the CDMO while Station Name is the short-hand name for each site. Site status is either primary (P) or secondary (S). The date that monitoring began at each site and, when applicable, the date that the site was decommissioned are listed. If a site has not been decommissioned, not applicable (NA) has been added to the Reason Decommissioned column.

| Station<br>Code | SWMP<br>Status | Station<br>Name  | Location                                                                      | Active Dates                           | Reason<br>Decommissioned         | Notes |
|-----------------|----------------|------------------|-------------------------------------------------------------------------------|----------------------------------------|----------------------------------|-------|
| owcbrwq         | Р              | Berlin<br>Road   | Latitude 41° 20' 56" N,<br>Longitude 82° 30' 44" W                            |                                        |                                  | NA    |
| owcdrwq         | Р              | Darrow<br>Road   | Latitude 41° 21' 54" N, 08/01/2007 00:00 – NA Longitude 82° 30' 17" W current |                                        | NA                               |       |
| owerrwq         | S              | Railroad         | Latitude 41° 22' 21" N,<br>Longitude 82° 30' 48 W                             | 06/07/2023 17:00 –<br>current          | NA                               | NA    |
| owcolwq         | Р              | Lower<br>Estuary | Latitude 41° 22' 55" N, 04/01/2002 00:00 –<br>Longitude 82° 30' 51" W current |                                        | NA                               | NA    |
| owcwmwq         | Р              | Route 6          | Latitude 41° 22' 57" N,<br>Longitude 82° 30' 53" W                            | 05/01/1995 00:00 –<br>current          | NA                               | NA    |
| owcsuwq         | Р              | Route 2          | Latitude 41° 22' 02" N,<br>Longitude 82° 30' 26" W                            | 05/01/1995 00:00 –<br>08/23/2007 13:15 | Bridge repair; site inaccessible | NA    |

The sonde at the State Route 6 (WM) site (Table 2) is approximately 150 m from the mouth of Old Woman Creek. In this portion of the Reserve, the creek is shallow but extends over a large surface area. This site frequently experiences influx of Lake Erie waters. Some rooted aquatic vegetation is present directly adjacent to the site, along with both emergent and submerged vegetation within 3 m of the site. Historically, the sonde at this site was 18 cm above the bottom sediments, until 17 August 2016, when the sonde was repositioned due to high water levels. At that time, the height of the sonde was 28 cm above the sediment. By 2019, the bottom 23–28 cm of the deployment pipe had filled with mud and the bottom 5 cm of the sonde guard frequently filled with mud during deployments. On October 29, 2019, the deployment pipe was replaced with a setup that keeps the pipe well above the bottom to prevent sediment build-up. Sonde depth after this modification was 29 cm above the bottom, very close to the deployment depth in the previous housing, based on previous measurements. This places the sensors at 37 cm above the bottom and the depth sensor at 52 cm (Note: the distance from the bottom end of the sonde guard to the bottom/face of all sensors except the depth sensor is 8 cm; the distance from the

bottom end of the sonde guard to the depth sensor is 23 cm). The intake tube for associated diel sampling (via Teledyne 5800 refrigerated autosampler) is clamped to the outside of the sonde tube between 23 cm (bottom of intake guard) and 39 cm (top of intake guard) from the bottom.

Table 2: Site description for site Wetland Mouth (owcwqwm).

| Site name                                                                                                                                                                                | Wetland Mouth or State Route 6 (WM)                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Latitude and longitude                                                                                                                                                                   | Latitude 41° 22' 57" N, Longitude 82° 30' 53" W                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Tidal range (meters)                                                                                                                                                                     | The tidal range in Lake Erie (and therefore in the estuary) is 4 cm or less, although water levels may fluctuate by as much as 1.5 m depending on factors like precipitation, Lake Erie water levels, whether the barrier beach is open or closed, and seiches.                                                                                                            |  |  |  |
| Salinity range (psu)                                                                                                                                                                     | ≤ 0.4 psu                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Type and amount of freshwater input                                                                                                                                                      | Old Woman Creek is a freshwater stream that drains an agriculturally dominated landscape. 100% of the input into the stream is freshwater and the specific amount can be determined by looking at discharge data from an upstream USGS stream gauge or by requesting flow data from one of the two Acoustic Current Doppler Profilers (ADCPs) deployed within the estuary. |  |  |  |
| Water depth (meters, MLW)                                                                                                                                                                | This is not applicable to Old Woman Creek because this stream does not have tides nor a national tidal datum epoch.                                                                                                                                                                                                                                                        |  |  |  |
| Sonde distance from bottom (meters)                                                                                                                                                      | This is a fixed distance sonde deployed so that sonde sensor faces are 37 cm above the stream bottom.                                                                                                                                                                                                                                                                      |  |  |  |
| Bottom habitat or type                                                                                                                                                                   | The bottom sediments at this site are silty clay with some cobble                                                                                                                                                                                                                                                                                                          |  |  |  |
| Pollutants in area  Old Woman Creek has been classified as "impaired" acc U.S. EPA's 303(d) list because of high levels of e. coli ar sediments. High nutrient concentrations are also a |                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Description of watershed                                                                                                                                                                 | Old Woman Creek drains a 69 km <sup>2</sup> watershed that is dominated by agricultural land use (row crops, orchards, and, to a lesser extent, animal pasture).                                                                                                                                                                                                           |  |  |  |

The sonde at site OL (Table 3) is in the lower reaches of the estuary. This site is not visible from the estuary mouth, so northerly winds and resulting seiche activities should be less noticeable at this site, although they do occur. This site is located about 5 m north of a Nelumbo lutea bed, but no plants were immediately adjacent to the sonde. In March 2009, a new sonde site was established 5 m north of the original site due to damage of the original site by a winter storm. In 2010, this temporary site became the new OL site. At this site, the base of the sonde was 26 cm above the sediment at the time of installation. This site is telemetered to the GOES satellite. On December 1, 2016, the deployment fencepost and PVC trap were replaced with a steel pipe equipped with a steel trap to achieve a more vertically stable deployment platform. The height of the sonde above the sediment was 42 cm off the bottom. In early 2018, the height of the sonde changed because the cable on which the trap was suspended slipped through a clamp, causing the trap to descend to where the depth sensor was 23 cm above the sediment and the other sensors were 2 cm above the sediment. The trap was re-set on May 23, 2018 at 10:45 EST to position the depth sensor to 45 cm above the sediment and the other sensors to 32 cm above the sediment (note: trap length is 73 cm from top of trap to the top of the trap bottom, where the sonde guard rests; the distance from the bottom end of the sonde guard to the bottom/face of all sensors except the depth sensor is 8 cm; the distance from the bottom end of the sonde guard to the depth sensor is 23 cm).

Table 3: Site description for site Overlook (owcwqwm).

| Site name                           | Overlook or Lower Estuary (OL)                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Latitude and longitude              | Latitude 41° 22' 55" N, Longitude 82° 30' 51" W                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Tidal range (meters)                | The tidal range in Lake Erie (and therefore in the estuary) is 4 cm or less, although water levels may fluctuate by as much as 1.5 m depending on factors like precipitation, Lake Erie water levels, whether the barrier beach is open or closed, and seiches.                                                                                                            |  |  |  |
| Salinity range (psu)                | ≤ 0.4 psu                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Type and amount of freshwater input | Old Woman Creek is a freshwater stream that drains an agriculturally dominated landscape. 100% of the input into the stream is freshwater and the specific amount can be determined by looking at discharge data from an upstream USGS stream gauge or by requesting flow data from one of the two Acoustic Current Doppler Profilers (ADCPs) deployed within the estuary. |  |  |  |
| Water depth (meters, MLW)           | This is not applicable to Old Woman Creek because this stream does not have tides nor a national tidal datum epoch.                                                                                                                                                                                                                                                        |  |  |  |
| Sonde distance from bottom (meters) | This is a fixed distance sonde deployed so that sonde sensor faces are 32 cm above the stream bottom.                                                                                                                                                                                                                                                                      |  |  |  |
| Bottom habitat or type              | The bottom sediments are silty clay.                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Pollutants in area                  | Old Woman Creek has been classified as "impaired" according to the U.S. EPA's 303(d) list because of high levels of <i>e. coli</i> and suspended sediments. High nutrient concentrations are also a concern.                                                                                                                                                               |  |  |  |
| Description of watershed            | Old Woman Creek drains a 69 km <sup>2</sup> watershed that is dominated by agricultural land use (row crops, orchards, and, to a lesser extent, animal pasture).                                                                                                                                                                                                           |  |  |  |

The sonde at site RR (Table 4) is located on a railroad bridge that crosses the estuary. The bridge was constructed over Old Woman Creek's thalweg, but the tracks on either side of the bridge were built on top of fill added to raise the tracks above the wetland and make it level with the banks on either side. This "pinch point" created by the railroad bridge separates the upstream portion of the estuary, where a clearly defined channel is surrounded by small patches of wetland vegetation, and the downstream portion of the estuary, which is dominated by emergent macrophytes (a mix of either American water lotus [Nelumbo lutea] and white water lily [Nymphaea odorata], or cattail [Typha latifolia] and common reed [Phragmites australis], depending on water levels in previous years). The sonde trap at site RR is positioned vertically so that the bottom of the sonde guard is 42 cm above the stream bottom (Note: The distance from the bottom end of the sonde guard to the bottom/face of all sensors except the depth sensor is 8 cm; the distance from the bottom end of the sonde guard to the depth sensor is 23 cm). The trap is located right above the steeply sloping side of the abutment and several small ledges contribute to an uneven substrate immediately beneath and surrounding the sonde.

Table 4: Site description for site Railroad (owcwgrr).

| Tuble 1. Site description for site Hamoud (owewqir). |                                                                                                                                                                                                                                                                 |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Site name                                            | Railroad (RR)                                                                                                                                                                                                                                                   |  |  |  |
| Latitude and longitude                               | Latitude 41° 22' 21" N, Longitude 82° 30' 47" W                                                                                                                                                                                                                 |  |  |  |
| Tidal range (meters)                                 | The tidal range in Lake Erie (and therefore in the estuary) is 4 cm or less, although water levels may fluctuate by as much as 1.5 m depending on factors like precipitation, Lake Erie water levels, whether the barrier beach is open or closed, and seiches. |  |  |  |

| Salinity range (psu)                | ≤ 0.4 psu                                                                                                                                                                                                                                                                      |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Type and amount of freshwater input | Old Woman Creek is a freshwater stream that drains an agriculturally dominated landscape. 100% of the input into the stream is freshwater and the specific amount can be determined by looking at discharge data from an upstream USGS stream gauge or by requesting flow data |  |  |  |
|                                     | from one of the two Acoustic Current Doppler Profilers (ADCPs) deployed within the estuary.                                                                                                                                                                                    |  |  |  |
| Water depth (meters, MLW)           | This is not applicable to Old Woman Creek because this stream does not have tides nor a national tidal datum epoch.                                                                                                                                                            |  |  |  |
| Sonde distance from bottom (meters) | This is a fixed distance sonde deployed so that sonde sensor faces are 42 cm above the stream bottom.                                                                                                                                                                          |  |  |  |
| Bottom habitat or type              | Substrate beneath the sonde is cobble and concrete from the abutment, but substrate at the middle of the Old Woman Creek channel, located 6 m from the sonde, is mainly gravel.                                                                                                |  |  |  |
| Pollutants in area                  | Old Woman Creek has been classified as "impaired" according to the U.S. EPA's 303(d) list because of high levels of <i>e. coli</i> and suspended sediments. High nutrient concentrations are also a concern.                                                                   |  |  |  |
| Description of watershed            | Old Woman Creek drains a 69 km² watershed that is dominated by agricultural land use (row crops, orchards, and, to a lesser extent, animal pasture).                                                                                                                           |  |  |  |

The sonde at site DR (Table 5) is at the southern boundary of the reserve. The sonde trap is suspended from the western most of the two, center guard rail supports on the north side of the Darrow Road bridge near the deepest part of the creek channel. At this site, the creek is relatively narrow. Although water direction and flow are influenced at this site by changes in Lake Erie water levels, this site does not have direct contact with Lake Erie waters. No rooted aquatic vegetation is present near or upstream from this site. The trap was repaired and re-deployed in March 2016 and was 45 cm above the bottom. During periods when the sonde is removed due to threat of ice, the sonde tube is also removed. In 2023, the sonde tube was re-deployed at 30 cm above the bottom.

Table 5: Site description for site Darrow Road (owcwqdr).

| Site name                           | Darrow Road (DR)                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Latitude and longitude              | Latitude 41° 21'54" N, Longitude 82° 30' 17" W                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Tidal range (meters)                | The tidal range in Lake Erie (and therefore in the estuary) is 4 cm or less, although water levels may fluctuate by as much as 1.5 m depending on factors like precipitation, Lake Erie water levels, whether the barrier beach is open or closed, and seiches.                                                                                                            |  |  |  |
| Salinity range (psu)                | ≤ 0.4 psu                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Type and amount of freshwater input | Old Woman Creek is a freshwater stream that drains an agriculturally dominated landscape. 100% of the input into the stream is freshwater and the specific amount can be determined by looking at discharge data from an upstream USGS stream gauge or by requesting flow data from one of the two Acoustic Current Doppler Profilers (ADCPs) deployed within the estuary. |  |  |  |
| Water depth (meters, MLW)           | This is not applicable to Old Woman Creek because this stream does not have tides nor a national tidal datum epoch.                                                                                                                                                                                                                                                        |  |  |  |
| Sonde distance from bottom (meters) | The sonde is suspended from a bridge so that the sensor faces are 30 cm above the stream bottom. During periods of high flow, the sonde may be pushed higher up in the water column. In extreme cases, the                                                                                                                                                                 |  |  |  |

|                          | distance the sensor faces are above the stream bed may be up to 1.5 m higher than when the sonde is in its normal position.                                                                                  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bottom habitat or type   | Bottom sediments in the thalweg are gravel, but transition to silty clay towards the streambanks.                                                                                                            |  |  |
| Pollutants in area       | Old Woman Creek has been classified as "impaired" according to the U.S. EPA's 303(d) list because of high levels of <i>e. coli</i> and suspended sediments. High nutrient concentrations are also a concern. |  |  |
| Description of watershed | Old Woman Creek drains a 69 km <sup>2</sup> watershed that is dominated by agricultural land use (row crops, orchards, and, to a lesser extent, animal pasture).                                             |  |  |

The sonde at site BR (Table 6) is in the lower portion of the creek proper. Just upstream from the sonde, Berlin Road crosses Old Woman Creek. Site BR is upstream of the first riffle above the estuary. Unlike the other three sites, Lake Erie water levels have no impact on the BR site. No aquatic macrophytes are present at or near this site. The sonde was 18 cm above the bottom at this site when first installed. During winter 2014, the sonde distance above bottom was 14 cm above the stream bottom. During summer 2020, the bottom of the sonde guard was 24 cm above the stream bottom (Note: The distance from the bottom end of the sonde guard to the bottom/face of all sensors except the depth sensor is 8 cm; the distance from the bottom end of the sonde guard to the depth sensor is 23 cm).

Table 6: Site description for site Berlin Road (owcwqbr).

| Site name                           | Berlin Road (BR)                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Latitude and longitude              | Latitude 41° 20'56" N, Longitude 82° 30'44" W                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Tidal range (meters)                | The tidal range in Lake Erie (and therefore in the estuary) is 4 cm or less, although water levels may fluctuate by as much as 1.5 m depending on factors like precipitation, Lake Erie water levels, whether the barrier beach is open or closed, and seiches.                                                                                                            |  |  |  |
| Salinity range (psu)                | ≤ 0.4 psu                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Type and amount of freshwater input | Old Woman Creek is a freshwater stream that drains an agriculturally dominated landscape. 100% of the input into the stream is freshwater and the specific amount can be determined by looking at discharge data from an upstream USGS stream gauge or by requesting flow data from one of the two Acoustic Current Doppler Profilers (ADCPs) deployed within the estuary. |  |  |  |
| Water depth (meters, MLW)           | This is not applicable to Old Woman Creek because this stream does not have tides nor a national tidal datum epoch.                                                                                                                                                                                                                                                        |  |  |  |
| Sonde distance from bottom (meters) | This is a fixed distance sonde deployed so that sonde sensor faces are 24 cm above the stream bottom.                                                                                                                                                                                                                                                                      |  |  |  |
| Bottom habitat or type              | The bottom of the creek at this site is a combination of rocks interspersed with some clay-silt that has been washed in from upstream.                                                                                                                                                                                                                                     |  |  |  |
| Pollutants in area                  | Old Woman Creek has been classified as "impaired" according to the U.S. EPA's 303(d) list because of high levels of <i>e. coli</i> and suspended sediments. High nutrient concentrations are also a concern.                                                                                                                                                               |  |  |  |
| Description of watershed            | Old Woman Creek drains a 69 km <sup>2</sup> watershed that is dominated by agricultural land use (row crops, orchards, and, to a lesser extent, animal pasture).                                                                                                                                                                                                           |  |  |  |

### 6) Data collection period -

Sondes were initially deployed at all sites when freezing conditions were no longer forecasted in the spring and left in the estuary until winter when freezing conditions were again forecasted (Table 7). Sampling at BR began on 03/07/2023 at 9:00 EST and continued until the sonde was pulled due to threat of ice on 11/24/2024 at 11:15 EST. Sampling at DR began on 03/07/2023 at 09:30 EST and continued until the sonde was pulled due to threat of ice on 1/2/2024 at 14:45 EST. Sampling at RR began on 06/07/2023 at 17:00 EST and continued until the sonde was pulled due to threat of ice on 1/2/2024 at 13:15 EST. Sampling at OL began on 03/07/2023 at 10:30 EST continued until the sonde was pulled due to threat of ice on 1/2/2024 at 13:45 EST. Sampling at WM began on 03/07/2023 at 11:00 EST and continued until the sonde was pulled due to threat of ice on 1/2/2024 at 14:00 EST.

Table 7: Deployment information for sondes used in 2023 water quality monitoring of Old Woman Creek. Sites are the five monitoring stations Berlin Road (BR), Darrow Road (DR), Railroad (RR), Lower Estuary (OL), and Wetland Mouth (WM). Deploy Date and Deploy Time indicate when sondes were first set out in the estuary and began recording data. Retrieval Date and Retrieval Time are the last times that data was recorded at each site. Sonde Model and Nickname reflect the type and individual identification for each of the sondes used in 2023 monitoring.

| Site | sondes used in 2023 monitoring  Site Deploy Date |       | Deploy<br>Time Retrieval Date |                  | Sonde Model<br>(Nickname) |  |
|------|--------------------------------------------------|-------|-------------------------------|------------------|---------------------------|--|
| BR   | 03/07/2023                                       | 9:00  | 04/11/2023                    | <b>Time</b> 7:45 | EXO3 (BR-11)              |  |
| BR   | 04/11/2023                                       | 8:00  | 05/09/2023                    | 7:45             | EXO3 (BR-12)              |  |
| BR   | 05/09/2023                                       | 8:00  | 06/06/2023                    | 12:30            | EXO3 (BR-11)              |  |
| BR   | 06/06/2023                                       | 12:45 | 07/11/2023                    | 9:15             | EXO3 (BR-12)              |  |
| BR   | 07/11/2023                                       | 9:30  | 08/15/2023                    | 12:00            | EXO3 (BR-11)              |  |
| BR   | 08/15/2023                                       | 12:15 | 09/12/2023                    | 11:15            | EXO3 (BR-12)              |  |
| BR   | 09/12/2023                                       | 11:30 | 10/11/2023                    | 10:45            | EXO3 (BR-11)              |  |
| BR   | 10/11/2023                                       | 11:00 | 11/07/2023                    | 11:00            | EXO3 (BR-12)              |  |
| BR   | 11/07/2023                                       | 11:15 | 11/24/2023                    | 11:15            | EXO3 (BR-12)              |  |
| DR   | 03/07/2023                                       | 9:30  | 04/11/2023                    | 8:00             | EXO3 (OL-11)              |  |
| DR   | 04/11/2023                                       | 8:30  | 05/09/2023                    | 8:15             | EXO3 (OL-12)              |  |
| DR   | 05/09/2023                                       | 8:30  | 06/06/2023                    | 12:45            | EXO3 (BR-2)               |  |
| DR   | 06/06/2023                                       | 13:00 | 07/11/2023                    | 9:45             | EXO3 (OL-12)              |  |
| DR   | 07/11/2023                                       | 10:15 | 08/15/2023                    | 12:30            | EXO3 (BR-2)               |  |
| DR   | 08/15/2023                                       | 12:45 | 09/12/2023                    | 11:45            | EXO3 (OL-12)              |  |
| DR   | 09/12/2023                                       | 12:00 | 10/11/2023                    | 11:15            | EXO3 (BR-2)               |  |
| DR   | 10/11/2023                                       | 11:30 | 11/07/2023                    | 11:30            | EXO3 (OL-12)              |  |
| DR   | 11/07/2023                                       | 12:00 | 12/12/2023                    | 12:30            | EXO3 (BR-2)               |  |
| DR   | 12/12/2023                                       | 12:45 | 01/02/2024                    | 14:45            | EXO3 (OL-12)              |  |
| RR   | 06/07/2023                                       | 17:00 | 07/11/2023                    | 11:00            | EXO2 (Haliaeetus)         |  |
| RR   | 07/11/2023                                       | 11:15 | 08/15/2023                    | 10:15            | EXO2 (BR-1)               |  |
| RR   | 08/15/2023                                       | 10:30 | 09/12/2023                    | 9:00             | EXO2 (Haliaeetus)         |  |
| RR   | 09/12/2023                                       | 9:15  | 10/11/2023                    | 8:15             | EXO2 (BR-1)               |  |
| RR   | 10/11/2023                                       | 8:30  | 11/07/2023                    | 11:00            | EXO2 (Haliaeetus)         |  |
| RR   | 11/07/2023                                       | 11:15 | 12/12/2023                    | 9:45             | EXO2 (BR-1)               |  |
| RR   | 12/12/2023                                       | 10:00 | 01/02/2024                    | 13:15            | EXO2 (Haliaeetus)         |  |
| OL   | 03/07/2023                                       | 10:30 | 04/11/2023                    | 9:15             | EXO2 (Lepomis)            |  |
| OL   | 04/11/2023                                       | 9:30  | 05/09/2023                    | 9:00             | EXO2 (Nelumbo)            |  |
| OL   | 05/09/2023                                       | 9:15  | 06/06/2023                    | 10:30            | EXO2 (Lepomis)            |  |
| OL   | 06/06/2023                                       | 11:00 | 07/11/2023                    | 11:45            | EXO2 (Nelumbo)            |  |
| OL   | 7/11/2023                                        | 12:00 | 08/15/2023                    | 9:30             | EXO2 (Lepomis)            |  |
| OL   | 8/15/2023                                        | 9:45  | 09/12/2023                    | 9:45             | EXO2 (Nelumbo)            |  |
| OL   | 9/12/2023                                        | 10:00 | 10/11/2023                    | 9:00             | EXO2 (Lepomis)            |  |
| OL   | 10/11/2023                                       | 9:15  | 11/07/2023                    | 9:30             | EXO2 (Nelumbo)            |  |
| OL   | 11/07/2023                                       | 9:45  | 12/12/2023                    | 10:45            | EXO2 (Lepomis)            |  |

| OL | 12/12/2023 | 11:00 | 01/02/2024 | 13:45 | EXO2 (Amia) |
|----|------------|-------|------------|-------|-------------|
| WM | 03/07/2023 | 11:00 | 04/11/2023 | 9:45  | EXO2 (WM-1) |
| WM | 04/11/2023 | 10:00 | 05/09/2023 | 9:30  | EXO2 (WM-2) |
| WM | 05/09/2023 | 9:45  | 06/06/2023 | 11:00 | EXO2 (WM-1) |
| WM | 06/06/2023 | 11:30 | 07/11/2023 | 12:15 | EXO2 (WM-2) |
| WM | 07/11/2023 | 12:30 | 08/15/2023 | 9:00  | EXO2 (WM-1) |
| WM | 08/15/2023 | 9:15  | 09/12/2023 | 10:15 | EXO2 (Esox) |
| WM | 09/12/2023 | 10:30 | 10/11/2023 | 9:30  | EXO2 (WM-1) |
| WM | 10/11/2023 | 9:45  | 11/07/2023 | 10:00 | EXO2 (Esox) |
| WM | 11/07/2023 | 10:15 | 12/12/2023 | 11:15 | EXO2 (WM-1) |
| WM | 12/12/2023 | 11:30 | 01/02/2024 | 14:00 | EXO2 (Esox) |

### 7) Distribution -

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

#### Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: <a href="http://www.nerrsdata.org/">http://www.nerrsdata.org/</a>; accessed 12 October 2022.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page <a href="www.nerrsdata.org">www.nerrsdata.org</a>. Data are available in comma delimited format.

### 8) Associated researchers and projects -

Two Nile microwave water level sensors are deployed in Old Woman Creek. One is 34 m northeast of the WM site while the other is 4 m west of the DR site. These water level sensors provide accurate water level data at the southern and northern bounds of the estuary. Water level data are transmitted to each site's respective GOES satellite simultaneously with the sonde data. Additionally, two Sontek Acoustic Doppler Current Profilers (ADCPs) have been installed to allow for measurement of water flow, velocity, and direction at the Route 6 bridge constriction point of the estuary, 27 m northeast of the WM site, and at the constriction point under the railroad bridge that crosses the estuary, 4 m north of site RR. The EXO sondes at the OL and WM sites are equipped with sensors that measure nonstandard SWMP parameters including in situ chlorophyll-*a* fluorescence, fluorescent dissolved organic matter (fDOM), phycocyanin fluorescence, and nitrate concentrations. Beginning in August, 2022, an EXO sonde was deployed on a buoy located 900 m north of the Old Woman Creek barrier beach in Lake Erie. The buoy, located at 41° 23' 32.568" N, 82° 30' 44.315" W, is deployed 0.5 m from the water's surface and measures standard SWMP parameters in addition to *in situ* chlorophyll-*a*, fDOM, and phycocyanin fluorescence. Please contact the Reserve's Research Coordinator for any of this data.

As part of the System-Wide Monitoring Program, Old Woman Creek National Estuarine Research Reserve also collects 15-minute meteorological data and monthly grab and diel samples for nutrient/pigment data which may be correlated with this water quality dataset. Meteorological data has been collected since 2002 at the owcowmet (OW) station, located 60 m east of the OWC visitor center. Beginning 11/18/2022, a secondary meteorological station, owcwrmet (WR) was installed on the Western Reserve Local Schools District Campus, 1.5 km east of the southernmost extent of the Old Woman Creek watershed boundary. All meteorological and nutrient/pigment data are available at /www.nerrsdata.org, or by contacting the Reserve's Research Coordinator.

### II. Physical Structure Descriptors

### 9) Sensor specifications -

The Old Woman Creek National Estuarine Research Reserve deployed thirteen different EXO sondes (YSI Inc., Yellow Springs, OH) during 2023. Two additional sondes, one an EXO1 and the other an EXO2, were used to collect simultaneous field measurements when sondes were exchanged. EXO3 sondes were deployed at BR and DR sites, while EXO2 sondes were deployed at RR, OL, and WM sites.

#### YSI EXO Sonde:

Parameter: Temperature

Units: Celsius (C)

Sensor Type: CT2 Probe, Thermistor

Model#: 599870 (owcbrwq, owcrrwq, owcwmwq)

Range: -5 to 50 C

Accuracy: -5 to 35: +/-0.01, 35 to 50: +/-0.05

Resolution: 0.001 C

Parameter: Temperature

Units: Celsius (C)

Sensor Type: Wiped probe; Thermistor Model#: 599827 (owcdrwq, owcolwq)

Range: -5 to 50 C Accuracy: ±0.2 C Resolution: 0.001 C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: CT2 Probe, 4-electrode cell with autoranging

Model#: 599870 (owcbrwq, owcrrwq, owcwmwq)

Range: 0 to 200 mS/cm

Accuracy: 0 to 100: +/- 0.5% of reading or 0.001 mS/cm; 100 to 200: +/- 1% of reading

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependant)

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: Wiped probe; 4-electrode cell with autoranging

Model#: 599827 (owcdrwq, owcolwq)

Range: 0 to 100 mS/cm

Accuracy: ±1% of the reading or 0.002 mS/cm, whichever is greater

Resolution: 0.0001 to 0.01 mS/cm (range dependent)

Parameter: Salinity

Units: practical salinity units (psu)/parts per thousand (ppt)

Sensor Type: CT2 probe, Calculated from conductivity and temperature

Model#: 599870 (owcbrwq, owcrrwq, owcwmwq)

Range: 0 to 70 psu

Accuracy: +/- 1.0% of reading pr 0.1 ppt, whichever is greater

Resolution: 0.01 psu

Parameter: Salinity

Units: practical salinity units (psu)/parts per thousand (ppt)

Model#: 599827 (owcdrwq, owcolwq)

Sensor Type: Wiped probe; Calculated from conductivity and temperature

Range: 0 to 70 ppt

Accuracy: ±2% of the reading or 0.2 ppt, whichever is greater

Resolution: 0.01 psu

Parameter: Dissolved Oxygen % saturation

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 599100-01

Range: 0 to 500% air saturation

Accuracy: 0-200% air saturation: +/- 1% of the reading or 1% air saturation, whichever is greater 200-

500% air saturation: +/- 5% or reading

Resolution: 0.1% air saturation

Parameter: Dissolved Oxygen mg/L (Calculated from % air saturation, temperature, and salinity)

Units: milligrams/Liter (mg/L)

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 599100-01 Range: 0 to 50 mg/L

Accuracy: 0-20 mg/L: +/-0.1 mg/l or 1% of the reading, whichever is greater

20 to 50 mg/L:  $\pm$ /- 5% of the reading

Resolution: 0.01 mg/L

Parameter: Non-vented Level - Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 33 ft (10 m)

Accuracy: +/- 0.013 ft (0.004 m) Resolution: 0.001 ft (0.001 m)

Parameter: pH Units: pH units

Sensor Type: Glass combination electrode Model#: 599701(guarded) or 599702(wiped)

Range: 0 to 14 units

Accuracy: +/- 0.1 units within +/- 10° of calibration temperature, +/- 0.2 units for entire temperature

range

Resolution: 0.01 units

Parameter: Turbidity

Units: formazin nephelometric units (FNU) Sensor Type: Optical, 90 degree scatter

Model#: 599101-01 Range: 0 to 4000 FNU

Accuracy: 0 to 999 FNU: 0.3 FNU or +/-2% of reading (whichever is greater); 1000 to 4000 FNU +/-

5% of reading

Resolution: 0 to 999 FNU: 0.01 FNU, 1000 to 4000 FNU: 0.1 FNU

### Depth Qualifier:

The NERR System-Wide Monitoring Program utilizes YSI data sondes that can be equipped with either vented or non-vented depth/level sensors. Readings for both vented and non-vented sensors are automatically compensated for water density change due to variations in temperature and salinity; but for all non-vented depth measurements, changes in atmospheric pressure between calibrations appear as changes in water depth. The error is equal to approximately 1.02 cm for every 1 millibar change in atmospheric pressure, and is eliminated for vented sensors because they are vented to the atmosphere throughout the deployment time interval.

Beginning in 2006, NERR SWMP standard calibration protocol calls for all non-vented depth sensors to read 0 meters at a (local) barometric pressure of 1013.25 mb (760 mm/hg). To achieve this, each site calibrates their depth sensor with a depth offset number, which is calculated using the actual atmospheric pressure at the time of calibration and the equation provided in the SWMP calibration sheet or digital calibration log. This offset procedure standardizes each depth calibration for the entire NERR System. If accurate atmospheric pressure data are available, non-vented sensor depth measurements at any NERR can be corrected.

In 2010, the CDMO began automatically correcting Depth/Level data for changes in barometric pressure as measured by the reserve's associated meteorological station during data ingestion. These corrected Depth/Level data are reported as cDepth and cLevel, and are assigned QAQC flags and codes based on QAQC protocols. Please see sections 11 and 12 for QAQC flag and code definitions.

NOTE: older Depth data cannot be corrected without verifying that the depth offset was in place and whether a vented or non-vented depth sensor was in use. No SWMP data prior to 2006 can be corrected using this method. The following equation is used for corrected Depth/Level data provided by the CDMO beginning in 2010:

((1013-BP)\*0.0102)+Depth/Level = cDepth/cLevel.

### Salinity Units Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by reserves. While the 6600 series sondes report salinity in parts per thousand (ppt) units, the EXO sondes report practical salinity units (psu). These units are essentially the same and for SWMP purposes are understood to be equivalent, however psu is considered the more appropriate designation. Moving forward the NERR System will assign psu salinity units for all data regardless of sonde type.

### **Turbidity Qualifier:**

In 2013, EXO sondes were approved for SWMP use and began to be utilized by reserves. While the 6600 series sondes report turbidity in nephelometric turbidity units (NTU), the EXO sondes use formazin nephelometric units (FNU). These units are essentially the same but indicate a difference in sensor methodology, for SWMP purposes they will be considered equivalent. Moving forward, the NERR System will use FNU/NTU as the designated units for all turbidity data regardless of sonde type. If turbidity units and sensor methodology are of concern, please see the Sensor Specifications portion of the metadata.

### Chlorophyll Fluorescence Disclaimer:

YSI chlorophyll sensors (6025 or 599102-01) are designed to serve as a proxy for chlorophyll concentrations in the field for monitoring applications and complement traditional lab extraction methods; therefore, there are accuracy limitations associated with the data that are detailed in the YSI manual including interference from other fluorescent species, differences in calibration method, and effects of cell structure, particle size, organism type, temperature, and light on sensor measurements.

### 10) Coded variable definitions -

| Sampling Station: | Sampling site code: | Station code: |
|-------------------|---------------------|---------------|
| State Route 6     | WM                  | owcwmwq       |
| Lower Estuary     | OL                  | owcolwq       |
| Railroad          | RR                  | owcrrwq       |
| Darrow Road       | DR                  | owcdrwq       |
| Berlin Road       | BR                  | owcbrwq       |

## 11) QAQC flag definitions -

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F\_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is missing and above or below sensor range. All remaining data are then flagged 0, passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

### 12) QAQC code definitions -

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an \* below) can be applied to the entire record in the F Record column.

#### General Errors

| OIO | 3 T | •          | 1 1  | 1    | 1    |        |
|-----|-----|------------|------|------|------|--------|
| GIC | No  | instrument | dent | Oved | due: | to ice |
| OIC | 110 | instrument | ucpi | Oycu | auc  | to icc |

GIM Instrument malfunction

GIT Instrument recording error; recovered telemetry data
GMC No instrument deployed due to maintenance/calibration

GNF Deployment tube clogged / no flow

GOW Out of water event

GPF Power failure / low battery

GQR Data rejected due to QA/QC checks

GSM See metadata

### Corrected Depth/Level Data Codes

GCC Calculated with data that were corrected during QA/QC GCM Calculated value could not be determined due to missing data GCR Calculated value could not be determined due to rejected data

GCS Calculated value suspect due to questionable data

GCU Calculated value could not be determined due to unavailable data

#### Sensor Errors

SBO Blocked optic

SCF Conductivity sensor failure

SCS Chlorophyll spike SDF Depth port frozen

SDG Suspect due to sensor diagnostics

SDO DO suspect

SDP DO membrane puncture

SIC Incorrect calibration / contaminated standard

SNV Negative value SOW Sensor out of water

SPC Post calibration out of range

SQR Data rejected due to QAQC checks

SSD Sensor drift

SSM Sensor malfunction

SSR Sensor removed / not deployed

STF Catastrophic temperature sensor failure

STS Turbidity spike

SWM Wiper malfunction / loss

### Comments

CAB\* Algal bloom

CAF Acceptable calibration/accuracy error of sensor

CAP Depth sensor in water, affected by atmospheric pressure

CBF Biofouling

CCU Cause unknown

CDA\* DO hypoxia (<3 mg/L)

CDB\* Disturbed bottom

CDF Data appear to fit conditions

CFK\* Fish kill

CIP\* Surface ice present at sample station

CLT\* Low tide

CMC\* In field maintenance/cleaning

CMD\* Mud in probe guard CND New deployment begins CRE\* Significant rain event

CSM\* See metadata

CTS Turbidity spike

CVT\* Possible vandalism/tampering CWD\* Data collected at wrong depth CWE\* Significant weather event

### 13) Post deployment information –

End of Deployment Readings in Standard Solutions

Post deployment information for each sonde is recorded to determine whether sensor drift occurs while the sonde is in the estuary (Table 8). When the sonde is brought back to the lab, it is placed in a bucket of aerated water (i.e., an oxygen saturated environment) for 30 minutes to verify that the dissolved oxygen sensor has not drifted. Specific conductance is checked against a 1.413 mS/cm standard post-deployment. A 2-point calibration is used for pH with 7.00 and 10.00 standards, both of which are corrected for temperature, and both of which are used to verify the pH sensor has not drifted post deployment. Turbidity is also calibrated with a 2-point calibration and is checked post deployment. The low turbidity standard is a 0.00 NTU deionized water blank while the high standard is 124.00 NTU. All sondes are unvented. Therefore, the expected depth reading is corrected for changes in barometric pressure.

Table 8: Post-deployment information for each sonde. The location of each Site is Berlin Road (BR), Darrow Road (DR), Railroad (RR), Lower Estuary (OL) or Wetland Mouth (WM). Deploy Date is the beginning date when sondes were first set out in the estuary. Post-deployment values for specific conductance (Sp. Cond.), pH, and turbidity are listed above the standard value for each parameter which is listed in parentheses. For depth, the top value is the post-deployment value while the bottom value in parentheses is the expected depth offset reading corrected for changes in barometric pressure. Standards for pH were corrected for temperature, and both pH and turbidity are checked against a high and low standard post-deployment because both were originally calibrated using a 2-point calibration. Post deployment dissolved oxygen is checked by placing the sonde in an aerated bucked of water and recording two readings. In instances where values were obtained from telemetered data because a SD Card Error caused the sonde to not log internally, "n/a" (not

applicable) is used to indicate that no post-deploy dissolved oxygen concentrations were available.

| Site | Deploy Date | Dissolved Oxygen 1 (%)   | Dissolved<br>Oxygen 2 | Depth (m) | Sp. Cond.<br>(mS/cm) | pH 7   | pH 10   | Low Turbidity Standard (NTU) | High Turbidity Standard (NTU) |
|------|-------------|--------------------------|-----------------------|-----------|----------------------|--------|---------|------------------------------|-------------------------------|
| BR   | 03/07/2023  | 97.9                     | 98.3                  | 0.099     | 1.411                | 7.10   | 10.02   | 0.38                         | 123.97                        |
| DIX  | 03/07/2023  | 91.9                     | 90.5                  | (0.099)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| BR   | 04/11/2023  | 94                       | 93.8                  | 0.069     | 1.364                | 7.05   | 9.94    | 0.66                         | 121.12                        |
| DK   | 04/11/2023  | 74                       | 75.0                  | (0.069)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| BR   | 05/09/2023  | 92.8                     | 92.9                  | -0.03     | 1.415                | 7.07   | 10.01   | 0.47                         | 121.92                        |
| DK   | 03/07/2023  | 72.0                     | 72.7                  | (-0.013)  | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| BR   | 06/06/2023  | 89.3                     | 88.5                  | -0.02     | 1.414                | 7.05   | 9.98    | 0.06                         | 124.21                        |
| DIC  | 00/00/2023  | 07.3                     | 00.5                  | (-0.012)  | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| BR   | 07/11/2023  | 86.9                     | 86.7                  | -0.04     | 1.439                | 7.06   | 10.02   | 0.87                         | 119.12                        |
| DK   | 07/11/2023  | 00.7                     | 00.7                  | (0.008)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| BR   | 08/15/2023  | 97.6                     | 97.6                  | 0.019     | 1.424                | 6.98   | 9.93    | -0.01                        | 122.73                        |
| DIC  | 00/13/2023  |                          |                       | (0.018)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| BR   | 09/12/2023  | 95.9                     | 95.8                  | 766.6     | 1.44                 | 7.11   | 10.08   | 0.04                         | 120.22                        |
| DIC  | 07/12/2023  | 73.7                     | 75.0                  | (0.089)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| BR   | 10/11/2023  | 97.8                     | 97.8                  | 0.004     | 1.388                | 7.04   | 9.98    | 0.09                         | 123.79                        |
| DIC  | 10/11/2029  | 77.0                     | 27.0                  | (0.008)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| BR   | 11/07/2023  | 102.7                    | 102.8                 | 0.150     | 1.446                | 7.11   | 9.91    | 0.06                         | 120.91                        |
| DIC  | 11/07/2023  | 102.7                    | 102.0                 | (0.150)   | 1.413)               | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| DR   | 03/07/2023  | n/a                      | n/a                   | 0.111     | 1.425                | 7.05   | 10.04   | 0.03                         | 122.89                        |
| DK   | 03/07/2023  | 11/ a                    | 11/ a                 | (0.099)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| DR   | 04/11/2023  | 92.9                     | 92.7                  | 0.065     | 1.435                | 6.97   | 9.97    | 0.03                         | 121.29                        |
| DK   | 04/11/2023  | 92.9                     | 92.7                  | (0.069)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| DR   | 05/09/2023  | 95.7                     | 95.7                  | -0.03     | 1.435                | 7.3    | 10.15   | 0.33                         | 118.00                        |
| DK   | 03/09/2023  | 95./                     | 93.1                  | (-0.013)  | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| DR   | 06/06/2023  | 96.4                     | 96.9                  | -0.02     | 1.4                  | 7.06   | 10.02   | 0.08                         | 124.91                        |
| DK   | 00/00/2023  | <i>7</i> 0. <del>1</del> | 90.9                  | (-0.012)  | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |
| DR   | 07/11/2023  | 86.5                     | 87.4                  | -0.04     | 1.427                | 7.03   | 9.94    | 0.09                         | 122.01                        |
| DK   | 0//11/2023  | 80.5                     | 87.4                  | (0.008)   | (1.413)              | (7.01) | (10.03) | (0.00)                       | (124.00)                      |

| D.D. | T T          |       | 05.0  | 0.026    | 1.434   | 7.01   | 9.97          | -0.18  | 122.94   |
|------|--------------|-------|-------|----------|---------|--------|---------------|--------|----------|
| DR   | 08/15/2023   | 95.5  | 95.8  | (0.018)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| DR   | 00/12/2022   | 95.9  | 95.8  | -0.04    | 1.426   | 6.97   | 9.95          | 0.04   | 125.55   |
| DK   | 09/12/2023   | 95.9  | 95.8  | (0.089)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| DR   | 10/11/2023   | 97.9  | 98.0  | 0.003    | 1.437   | 6.89   | 9.89          | 0.27   | 126.70   |
| DK   | 10/11/2023   | 97.9  | 98.0  | (0.008)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| DR   | 11/07/2023   | 100.0 | 99.8  | 0.124    | 1.480   | 7.08   | 10.07         | -0.19  | 118.85   |
| DK   | 11/0//2023   | 100.0 | 99.6  | (0.099)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| DR   | 12/12/2023   | 100.1 | 100.1 | 0.020    | 1.448   | 7.09   | 10.36         | 0.04   | 127.88   |
| DK   | 12/12/2023   | 100.1 | 100.1 | (0.038)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| D.D. | 07/07/2022   | 00.2  | 00.2  | -0.000   | 1.293   | 6.96   | 9.88          | 1.35   | 129.03   |
| RR   | 06/07/2022   | 99.3  | 99.3  | (-0.084) | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| D.D. | 07/11/2022   | 94.5  | 04.2  | -0.040   | 1.431   | 7.05   | 10.00         | 0.29   | 120.06   |
| RR   | 07/11/2023   | 94.5  | 94.2  | (0.008)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| RR   | 00/15/2022   | 99.0  | 98.8  | 0.063    | 1.373   | 7.06   | 9.97          | 0.53   | 119.63   |
| KK   | 08/15/2023   | 99.0  | 98.8  | (0.048)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| RR   | D 00/40/0000 | 07.1  | 97.6  | -0.013   | 1.435   | 7.03   | 10.01 (10.03) | 0.26   | 119.51   |
| KK   | 09/12/2023   | 97.1  | 97.0  | (0.089)  | (1.413) | (7.01) | 10.01 (10.03) | (0.00) | (124.00) |
| RR   | 10/11/2023   | 98.2  | 98.1  | 0.024    | 1.417   | 6.93   | 9.93          | 0.63   | 126.95   |
| IXIX | 10/11/2023   | 98.2  | 90.1  | (0.008)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| RR   | 11/07/2023   | 99.9  | 99.9  | 0.139    | 1.467   | 7.09   | 10.04         | -0.14  | 115.46   |
| KK   | 11/07/2023   | 99.9  | 99.9  | (0.099)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| RR   | 12/12/2023   | 99.6  | 99.6  | 0.006    | 1.438   | 6.98   | 10.03         | 0.23   | 129.30   |
| KK   | 12/12/2023   | 99.0  | 99.0  | (0.038)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| OL   | 02/07/2022   | 82.6  | 82.6  | 0.105    | 1.424   | 7.03   | 10.03         | 0.07   | 120.81   |
| OL   | 03/07/2023   |       | 82.6  | (0.099)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| OL   | 04/11/2023   | 90.4  | 89.6  | 0.071    | 1.408   | 7.07   | 9.97          | -0.13  | 122.69   |
| OL   | 04/11/2023   | 90.4  | 69.0  | (0.069)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| OL   | 05/09/2023   | 97.1  | 96.8  | -0.030   | 1.439   | 7.04   | 10.01         | -0.44  | 117.86   |
| OL   | 03/09/2023   | 97.1  | 90.0  | (-0.013) | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
| OL   | 06/06/2023   | 86.9  | 86.6  | na       | 1.393   | 7.03   | 9.99          | 0.64   | 97.46    |
| OL   | 00/00/2023   | 60.9  | 00.0  | (-0.012) | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
|      | 07/11/2023   | 85.9  | 86    | -0.040   | 1.421   | 7.07   | 9.98          | 0.50   | 119.99   |
| OL   | 01/11/2023   | 03.9  | 00    | (0.008)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
|      | 08/15/2023   | 97.7  | 97.6  | 0.026    | 1.413   | 7.09   | 10.10         | -0.49  | 119.91   |
| OL   | 00/13/2023   | 21.1  | 97.0  | (0.018)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
|      | 09/12/2023   | 75.7  | 78.6  | -0.040   | 1.425   | 7.05   | 10.01         | 0.11   | 118.08   |
| OL   | 07/12/2023   | 1 3.1 | 70.0  | (0.089)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |
|      | 10/11/2023   | n/a   | n/a   | 0.005    | 1.434   | 7.00   | 10.01         | 0.37   | 123.90   |
| OL   | 10/11/2023   | 11/ α | 11/ a | (0.008)  | (1.413) | (7.01) | (10.03)       | (0.00) | (124.00) |

|        | 11/07/2023    | 106.9   | 106.9 | 0.176    | 1.444   | 6.98   | 9.99    | 0.03   | 116.30   |        |
|--------|---------------|---------|-------|----------|---------|--------|---------|--------|----------|--------|
| OL     | 11/0//2023    | 100.9   | 100.9 | (0.099)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
|        | 12/12/2023    | 98.1    | 98.1  | -0.013   | 1.446   | 7.03   | 10.02   | -0.16  | 125.95   |        |
| OL     | 12/12/2023    | 96.1    | 96.1  | (0.038)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | 03/07/2023    | 90.4    | 89.5  | 0.145    | 1.381   | 7.11   | 10.05   | 0.23   | 116.24   |        |
| W IVI  | 03/07/2023    | 90.4    | 69.3  | (0.099)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | 04/11/2023    | 90.2    | 91    | 0.060    | 1.409   | 7.01   | 9.95    | 0.22   | 120.51   |        |
| VV 1V1 | 04/11/2023    | 90.2    | 91    | (0.069)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | WM 05/09/2023 | 96.2    | 95.8  | -0.030   | 1.368   | 7.00   | 9.99    | -0.04  | 119.00   |        |
| VV 1V1 |               |         | 75.0  | (-0.013) | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | WM 06/06/2023 | 95.7    | 96.1  | -0.020   | 1.406   | 6.99   | 9.98    | 0.14   | 128.99   |        |
| VV IVI | 00/00/2023    |         | 90.1  | (-0.012) | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | 07/11/2023    | 91.5    | 90.9  | -0.030   | 1.052   | 7.05   | 9.95    | 0.04   | 121.25   |        |
| VV 1V1 | 07/11/2023    |         | 50.5  | (0.008)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | 08/15/2023    | 96.5    | 96.8  | 0.037    | 1.423   | 6.97   | 9.98    | 0.57   | 123.95   |        |
| VV 1V1 | 00/13/2023    |         | 70.0  | (0.018)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | 09/12/2023    | 05.4    | 95.4  | 95.4     | -0.040  | 1.417  | 7.01    | 9.99   | 0.40     | 120.85 |
| VV 1V1 | 07/12/2023    | 73.4    | 75.4  | (0.089)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | 10/11/2023    | 97.3    | 97.6  | 0.025    | 1.429   | 7.03   | 9.98    | 0.05   | 122.99   |        |
| VV 1V1 | 10/11/2023    | 91.3    | 57.0  | (0.008)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | 11/07/2023    | 100.4   | 100.8 | 0.149    | 1.454   | 7.04   | 10.02   | -0.06  | 115.51   |        |
| VV 1V1 | 11/07/2023    | 100.4   | 100.0 | (0.099)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |
| WM     | 12/12/2023    | 99.1    | 99.1  | -0.018   | 1.449   | 7.05   | 10.04   | 0.39   | 127.12   |        |
| AA 1AT | 12/12/2023    | .5 99.1 | 77.1  | (0.038)  | (1.413) | (7.01) | (10.03) | (0.00) | (124.00) |        |

### 14) Other remarks/notes -

All times are Eastern Standard Time (EST; UTC-4). In some instances, data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

# QAQC Flagging notes

# Barrier Beach Status and Water Exchange

The water quality of the OL and WM sites at OWC are influenced by whether the barrier beach is breached/open (i.e., surface water exchange is occurring between the estuary and the lake). When the barrier is open, wind-driven surface water exchange usually results in cycles of water inflow from the lake and outflow to the lake that can be detected in water quality data. The change from closed to open can be rapid and dramatic, usually because of precipitation. Sometimes, this can be followed by seiche events, depending on winds during the storm. The transition from open to closed is gradual and usually marked by a gradual increase in water depth and specific conductivity. The opening of the mouth (and sometimes closing) is indicated in the "F\_Record" column as "CSM" (see metadata). Mouth status data through the end of record on January 02, 2024, are below:

| Status | Date From  | Date To    |
|--------|------------|------------|
| Closed | 01/01/2023 | 01/03/2023 |
| Open   | 01/04/2023 | 04/20/2023 |
| Closed | 04/21/2022 | 05/02/2023 |
| Open   | 05/03/2023 | 05/17/2023 |
| Closed | 05/18/2023 | 06/15/2023 |
| Open   | 06/16/2023 | 06/22/2023 |
| Closed | 06/23/2023 | 07/15/2023 |
| Open   | 07/16/2023 | 08/22/2023 |
| Closed | 08/23/2023 | 08/23/2023 |
| Open   | 08/24/2023 | 09/26/2023 |
| Closed | 09/27/2023 | 10/14/2023 |
| Open   | 10/14/2023 | 10/20/2023 |
| Closed | 10/21/2023 | 10/29/2023 |
| Open   | 10/30/2023 | 11/11/2023 |
| Closed | 11/12/2023 | 12/01/2023 |
| Open   | 11/18/2023 | 12/01/2023 |
| Closed | 12/02/2023 | 12/07/2023 |
| Open   | 12/08/2023 | 12/21/2023 |
| Closed | 12/22/2024 | 12/23/2023 |
| Open   | 12/24/2023 | 01/02/2023 |

#### Rain and weather events

For rain events that affect water quality parameters, the "F\_Record" column is flagged for the entire day(s) that parameters are affected. This is not necessarily when precipitation occurs. For example, rainfall in the watershed is frequently heavier further south of the Old Woman Creek NERRS OW meteorological station. Occasionally, no rain is observed at the OW meteorological station but is observed at the WR meteorological station. Volunteer rain gauge observers also report precipitation throughout the watershed and region through the <a href="CoCoRaHS website">CoCoRaHS website</a>. A southernly storm can cause a delay between when parameters are affected at the southern BR site and at the northern WM site. In these instances, a storm event may be flagged a day later for WM than BR.

Weather events include periods of high wind, which can result in the inflow of water from Lake Erie into the estuary (e.g., true seiche, wind-induced water exchange, waves overtopping the barrier beach into the estuary) or outflow of water from the estuary (e.g., large decrease in water level not associated with a breach of the barrier beach). Lake water inflow events are usually evident at the OL and WM sites and can be most easily detected by plotting both specific conductivity and water depth. The intrusion of lake water into the estuary both increases depth and decreases specific conductivity. Other parameters may or may not change. These are labeled as a weather event in the "F\_Record" column for the duration of the event, in 24-hour periods (i.e., full days are flagged because of difficulty in identifying the exact start and end times of seiche events). Impacted parameter "F\_" column(s) may also be flagged, as deemed useful (e.g., if a seiche coincides with retrieval and deployment of sondes, causing the data to look like the retrieved and deployed sondes were not reading similar values). No notable seiche events occurred through December 2023.

### **Turbidity**

During rain events, there may be several high values that exceed a reasonable range of other values, and these are flagged <-3>(STS)(CRE).

### Site specific events:

### Berlin Road (BR)

During the summer months, dry conditions typically result in low flow at the BR site in which water level falls below the depth sensor and some or all the other sensors. For periods where some but not all sensors are out of water, <-3>(SOW) may be used in conjunction with <1>(CSM) for sensors believed to still be submerged. Periods containing <-3>(GOW) signify that all sensors were out of water.

A wiper malfunction likely caused erroneous pH and temperature readings for the following timestamps, which have been flagged <-3> [SWM](CSM); 06/20/23 at 11:30.

### Darrow Road (DR)

Large storm events can cause the sonde to swing up or to swing up and down, alternately, due to high flows. As a result, shallower depths or more variable depths are recorded and flagged as <1>[GSM](CWD) with the F\_Record containing the {CRE} code. All other parameters are flagged <0>[GSM](CWD). This may have occurred during the following rain events in 2023, as the result of heavy rain and flow: 03/23/2023 at 17:15 through 03/24/2023 at 01:45, on 03/25/2023 from 07:00 through 17:30, on 04/01/2023 from 16:30 through 23:15, on 08/24/2023 from 00:30 through 22:15, on 08/25/2023 from 00:30 through 09:00; on 12/27/2023 from 09:45 through 14:15.

Sonde field maintenance on 04/11/2023 at 08:15 and on 07/11/2023 at 10:00 caused all parameters to be rejected. These timestamps are flagged <-3>[GSM](CMC).

A wiper brush malfunction likely caused erroneous pH and temperature readings for the following timestamps, which have been flagged <-3> [SWM](CSM); 03/16/2023 at 13:00, 03/17/2023 at 15:45, 03/20/2023 at 18:15, 03/23/2023 at 17:15, 03/25/2023 at 04:00, 08:00, 10:30, 13:00, 13:30, 14:15, 14:45, and 16:30, and 03/26/2023 at 09:00.

Data collected between 04/02/2023 at 21:00 and 04/11/2023 at 08:15 could not be downloaded from the sonde due to an "SD card error." Therefore, telemetered data transmitted to the CDMO at the time they were measured is reported during this period. It should be noted that the .bin file reported to the CDMO will not contain data during these timestamps because data were not recorded on the sonde. All parameters in this period are flagged <1>[GIT](CSM).

The sonde was not fully descended in its deployment pipe from 06/06/2023 at 13:00 to 15:45 on 06/12/2023. The depth column was flagged <1>[GSM](CWD) and all other parameters were flagged <0>[GSM](CWD) for these time periods.

The bolts at the bottom of the deployment pipe were damaged, allowing the sonde to extend past its typical deployment position from 07/11/2023 at 10:15 to 07:00 on 07/18/2023. The depth column was flagged <1>[GSM](CWD) and all other parameters were flagged <0>[GSM](CWD) for these time periods.

Sonde field maintenance on 06/22/2023 at 15:45 caused all parameters to be rejected. This timestamp is flagged <-3>[GSM](CMC).

Sonde field maintenance on 11/07/2023 at 11:45 caused all parameters to be rejected. This timestamp is flagged <-2>[GMC](CSM).

A sonde malfunction occurred on 08/16/2023 from 15:45 through 16:15. Data for these timestamps were flagged <-3>[GIM](CSM).

# Railroad (RR)

During deployment tube maintenance on 09/26/2023, the sonde was tied off to the canoe. It was still in the water, but not at the proper site. Therefore, between 10:45–11:30, all parameters were flagged <-3>(CMC).

On 10/02/2023, the sonde tube was raised to more accurately reflect SWMP protocols. All depth timestamps before 12:15 are flagged as <1>[GSM](CWD), while all other parameters are flagged as <0>[GSM](CWD), unless existing comments already exist, in which case only (CWD) is flagged.

Site RR was powered down from 15:15–15:30 on 12/15/2023 due to maintenance on the site's Storm3 datalogger; these timestamps were flagged as <-3>[GMC].

#### Lower Estuary (OL)

The sonde was not fully descended in its deployment pipe from 04/11/2023 at 09:30 to 4/13/23 at 14:30, between 06/06/2023 at 11:00 to 19:00 on 06/15/2023, and from 11/07/2023 at 9:30 to 13:45 on 01/02/2024. The depth column was flagged <1>[GSM](CWD) and all other parameters were flagged <0>[GSM](CWD) for these time periods.

The sonde was not fully descended in its deployment pipe after field maintenance was performed on 05/25/2023 at 11:45; depth for this timestamp is flagged <1> [GSM] (CWD) and all other parameters are flagged <0>[GSM] (CWD).

The sonde was not fully descended in its deployment pipe on 06/06/2023 at 10:45 after deployment. Data for this timestamp were flagged <-2>[GMC].

The sonde depth sensor experienced a malfunction from 06/15/23 19:15 to 07/11/2023; depth data for these timestamps were flagged <-2>[SSM](CSM)

A sonde malfunction occurred on 10/22/2023 from 06:00 through 6:45, and on 10/25/2023 from 07:00 to 07:45. Data for these timestamps were flagged <-2>[GIM](CSM).

A sonde malfunction occurred on 11/06/2023 at 08:30. Data for this timestamp was flagged <-3>[GIM](CSM).

Data collected between 14:15 on 09/24/2023 to 09:00 on 10/11/2023, and between 23:15 on 10/18/2023 to 09:30 on 11/07/2023 could not be downloaded from the sonde. Therefore, telemetered data transmitted to the CDMO at the time they were measured is reported during this period. It should be noted that the .bin file reported to the CDMO will not contain data during these timestamps because data were not recorded on the sonde. All parameters in this period are flagged <1>[GIT](CSM).

A wiper brush malfunction likely caused erroneous pH and temperature readings on 11/22/2023 at 02:00 and 16:45; pH and temperature data for these timestamps have been flagged <-3> [SWM](CSM).

### Wetland Mouth (WM):

Data collected between 11:30 to 21:15 on 06/06/2023 and from 22:30 on 06/06/2023 to 14:15 on 06/13/2023 could not be downloaded from the sonde. Therefore, telemetered data transmitted to the CDMO at the time they were measured is reported during this period. It should be noted that the .bin file reported to the CDMO will not contain data during these timestamps because data were not recorded on the sonde. All parameters in this period are flagged <1>[GIT](CSM).

A sonde instrument malfunction occurred on 06/06/2023 from 21:30 to 22:15, on 06/13/2023 from 14:30 to 15:15, from 06/15/2023 at 19:15 to 06/26/2023 at 07:30, and at 05:00 on 12/14/2023. Data for these timestamps were flagged <-3>[GIM](CSM).

The sonde was not fully descended in its deployment pipe on 06/06/2023 at 11:15 after deployment. Data for this timestamp were flagged <-3>[GMC] (CSM).

Sonde field maintenance on 12/21/2023 from 12:45 to 13:00 caused all parameters to be rejected. These timestamps are flagged <-3>[GSM](CMC).

A wiper brush malfunction likely caused erroneous pH and temperature readings on 10/20/2023 at 19:30, on 10/21/2023 at 05:30, on 10/22/2023 at 20:30, on 10/23/2023 at 15:15, on 10/24/2023 at 07:00, on 10/25/2023 at 18:45, on 10/27/2023 at 02:30, on 10/28/2023 at 02:00, on 10/29/2023 at 15:15, on 10/30/2023 at 06:30, on 11/01/2023 at 20:45, on 12/15/2023 at 11:45, on 12/16/2023 at 06:30, and on 12/18/2023 at 08:30; pH and temperature data for these timestamps have been flagged <-3> [SWM](CSM). Other dependent parameters (SpCond, salinity, DO, and depth) have been updated to -3 CSM.

### Field verification

Field data collected at time of sonde retrieval and deployment are reported (Table 9). Data were collected using a field sonde (EXO1 or EXO2) that was deployed simultaneous to the retrieved and newly deployed sondes.

Table 9: Water quality parameters for the field sonde deployed during each sonde swap. Site is the System-Wide Monitoring Program site, including Berlin Road (BR), Darrow Road (DR), Railroad (RR), Lower Estuary (OL), and Wetland Mouth (WM). Temperature (Temp), specific conductance (SpCond), salinity (Sal), pH, turbidity (Turbid), dissolved oxygen percent saturation (ODOsat), dissolved oxygen concentration (ODO), and depth were all recorded by the field sonde and are reported for the Date and Time the Sonde was deployed into and retrieved from the water. Not applicable (n/a) is used to indicate instances where no field sonde data exist.

| Site | Sonde     | Date (m/d/y) | Time (hh:mm) | Depth (meters) | ODOsat<br>(%) | ODO<br>(mg/L) | Sal (ppt) | SpCond<br>(mS/cm) | Turbid<br>(NTU) | pН   | Water<br>Temp<br>(°C) |
|------|-----------|--------------|--------------|----------------|---------------|---------------|-----------|-------------------|-----------------|------|-----------------------|
| BR   | deployed  | 03/07/2023   | 9:01         | 0.543          | 95.3          | 12.18         | 0.25      | 0.510             | 15.41           | 7.78 | 4.914                 |
| BR   | retrieved | 04/11/2023   | 7:44         | 0.161          | 88.3          | 10.21         | 0.28      | 0.578             | 5.41            | 7.82 | 8.926                 |
| BR   | deployed  | 04/11/2023   | 8:00         | 0.173          | 89.0          | 10.30         | 0.28      | 0.578             | 5.43            | 7.84 | 8.884                 |
| BR   | retrieved | 05/09/2023   | 7:44         | 0.072          | 89.4          | 9.42          | 0.29      | 0.586             | 5.95            | 7.89 | 12.924                |
| BR   | deployed  | 05/09/2023   | 8:01         | 0.092          | 89.8          | 9.47          | 0.29      | 0.586             | 5.77            | 7.89 | 12.911                |
| BR   | retrieved | 06/06/2023   | 12:29        | -0.024         | 78.4          | 7.55          | 0.35      | 0.719             | 9.46            | 7.73 | 17.069                |
| BR   | deployed  | 06/06/2023   | 12:34        | -0.024         | 77.9          | 7.50          | 0.35      | 0.719             | 10.55           | 7.73 | 17.087                |
| BR   | retrieved | 07/11/2023   | 9:14         | 0.013          | 79.5          | 7.15          | 0.28      | 0.570             | 19.51           | 7.77 | 20.489                |
| BR   | deployed  | 07/11/2023   | 9:31         | 0.012          | 77.8          | 6.99          | 0.28      | 0.570             | 11.05           | 7.76 | 20.525                |
| BR   | retrieved | 08/15/2023   | 11:59        | 0.056          | 85.9          | 7.76          | 0.25      | 0.524             | 18.81           | 7.79 | 20.285                |
| BR   | deployed  | 08/15/2023   | 12:16        | 0.056          | 85.7          | 7.74          | 0.25      | 0.526             | 19.66           | 7.78 | 20.275                |
| BR   | retrieved | 09/12/2023   | 11:14        | 0.039          | 83.5          | 7.80          | 0.27      | 0.554             | 13.32           | 7.79 | 18.579                |
| BR   | deployed  | 09/12/2023   | 11:31        | 0.040          | 82.0          | 7.66          | 0.27      | 0.556             | 9.00            | 7.79 | 18.607                |
| BR   | retrieved | 10/11/2023   | 10:59        | 0.085          | 77.6          | 8.57          | 0.33      | 0.663             | 5.82            | 7.69 | 10.841                |
| BR   | deployed  | 10/11/2023   | 11:01        | 0.084          | 77.4          | 8.55          | 0.32      | 0.663             | 3.67            | 7.69 | 10.843                |
| BR   | retrieved | 11/07/2023   | n/a          | n/a            | n/a           | n/a           | n/a       | n/a               | n/a             | n/a  | n/a                   |
| BR   | deployed  | 11/07/2023   | n/a          | n/a            | n/a           | n/a           | n/a       | n/a               | n/a             | n/a  | n/a                   |
| BR   | retrieved | 11/24/2023   | n/a          | n/a            | n/a           | n/a           | n/a       | n/a               | n/a             | n/a  | n/a                   |
| DR   | deployed  | 03/07/2023   | 9:32         | 0.426          | 90.2          | 11.35         | 0.24      | 0.491             | 25.94           | 7.76 | 5.509                 |
| DR   | retrieved | 04/11/2023   | 8:15         | 0.672          | 99.7          | 11.15         | 0.28      | 0.575             | 15.79           | 7.87 | 10.345                |
| DR   | deployed  | 04/11/2023   | 8:31         | 0.710          | 99.9          | 11.17         | 0.28      | 0.576             | 15.96           | 7.89 | 10.339                |
| DR   | retrieved | 05/09/2023   | 8:14         | 0.432          | 82.6          | 8.38          | 0.28      | 0.573             | 19.50           | 7.77 | 14.639                |
| DR   | deployed  | 05/09/2023   | 8:31         | 0.437          | 82.1          | 8.34          | 0.28      | 0.573             | 21.90           | 7.77 | 14.595                |
| DR   | retrieved | 06/06/2023   | 12:44        | 0.761          | 56.7          | 5.20          | 0.35      | 0.712             | 18.35           | 7.60 | 19.447                |
| DR   | deployed  | 06/06/2023   | 13:02        | 0.764          | 50.8          | 4.65          | 0.35      | 0.712             | 17.56           | 7.60 | 19.483                |
| DR   | retrieved | 07/11/2023   | 9:44         | 1.243          | 20.3          | 1.79          | 0.22      | 0.457             | 144.84          | 7.29 | 21.398                |
| DR   | deployed  | 07/11/2023   | 10:05        | 1.276          | 1.3           | 0.12          | 0.22      | 0.456             | 53.94           | 7.19 | 21.191                |
| DR   | retrieved | 08/15/2023   | 12:30        | 0.122          | 74.1          | 6.60          | 0.22      | 0.453             | 54.08           | 7.59 | 20.965                |
| DR   | deployed  | 08/15/2023   | 12:46        | 0.702          | 53.2          | 4.75          | 0.22      | 0.455             | 51.19           | 7.41 | 20.944                |
| DR   | retrieved | 09/12/2023   | 11:44        | 0.650          | 46.2          | 4.24          | 0.25      | 0.509             | 24.50           | 7.43 | 19.376                |

| DR | deployed  | 09/12/2023 | 12:00 | 0.656 | 48.9 | 4.49  | 0.25 | 0.510 | 18.98 | 7.47 | 19.398 |
|----|-----------|------------|-------|-------|------|-------|------|-------|-------|------|--------|
| DR | retrieved | 10/11/2023 | 11:14 | 0.540 | 50.7 | 5.40  | 0.23 | 0.651 | 11.84 | 7.48 | 12.462 |
| DR | deployed  | 10/11/2023 | 11:31 | 0.543 | 48.2 | 5.12  | 0.32 | 0.651 | 11.25 | 7.10 | 12.557 |
| DR | retrieved | 11/07/2023 | n/a   | n/a   | n/a  | n/a   | n/a  | n/a   | n/a   | n/a  | n/a    |
| DR | deployed  | 11/07/2023 | n/a   | n/a   | n/a  | n/a   | n/a  | n/a   | n/a   | n/a  | n/a    |
| DR | retrieved | 12/12/2023 | n/a   | n/a   | n/a  | n/a   | n/a  | n/a   | n/a   | n/a  | n/a    |
| DR | deployed  | 12/12/2023 | n/a   | n/a   | n/a  | n/a   | n/a  | n/a   | n/a   | n/a  | n/a    |
| DR | retrieved | 01/02/2024 | 14:45 | 0.716 | 91.6 | 11.99 | 0.24 | 0.502 | 37.41 | 8.09 | 4.024  |
| RR | deployed  | 06/07/2023 | n/a   | n/a   | n/a  | n/a   | n/a  | n/a   | n/a   | n/a  | n/a    |
| RR | retrieved | 07/11/2023 | 10:59 | 0.624 | 59.0 | 4.92  | 0.28 | 0.588 | 16.28 | 7.44 | 24.466 |
| RR | deployed  | 07/11/2023 | 11:16 | 0.633 | 63.5 | 5.27  | 0.28 | 0.588 | 16.86 | 7.48 | 24.643 |
| RR | retrieved | 08/15/2023 | 10:14 | 1.390 | 20.8 | 1.83  | 0.18 | 0.386 | 61.26 | 7.14 | 21.644 |
| RR | deployed  | 08/15/2023 | 10:31 | 1.310 | 22.3 | 1.96  | 0.18 | 0.382 | 53.14 | 7.14 | 21.756 |
| RR | retrieved | 09/12/2023 | 9:00  | 0.420 | 50.9 | 4.51  | 0.26 | 0.537 | 29.44 | 7.41 | 21.202 |
| RR | deployed  | 09/12/2023 | 9:17  | 1.547 | 31.3 | 2.78  | 0.26 | 0.542 | 35.12 | 7.31 | 21.134 |
| RR | retrieved | 10/11/2023 | 8:14  | 0.580 | 52.0 | 5.51  | 0.25 | 0.511 | 21.38 | 7.36 | 12.700 |
| RR | deployed  | 10/11/2023 | 8:31  | 1.004 | 50.9 | 5.39  | 0.25 | 0.512 | 23.33 | 7.34 | 12.666 |
| RR | retrieved | 11/07/2023 | 10:57 | n/a   | 66.3 | 7.35  | n/a  | 0.643 | n/a   | 7.75 | 10.600 |
| RR | deployed  | 11/07/2023 | 11:01 | n/a   | 65.4 | 7.31  | n/a  | 0.644 | n/a   | 7.78 | 10.600 |
| RR | retrieved | 12/12/2023 | 9:44  | 0.461 | 82.2 | 10.89 | 0.24 | 0.503 | 60.85 | 7.81 | 3.545  |
| RR | deployed  | 12/12/2023 | 10:01 | 0.465 | 81.9 | 10.85 | 0.24 | 0.506 | 60.04 | 7.80 | 3.533  |
| RR | retrieved | 01/02/2024 | 13:27 | 0.734 | 92.0 | 12.00 | 0.24 | 0.500 | 49.35 | 7.97 | 4.152  |
| OL | deployed  | 03/07/2023 | 10:31 | 0.866 | 79.7 | 9.92  | 0.20 | 0.420 | 81.89 | 7.61 | 5.944  |
| OL | retrieved | 04/11/2023 | 9:14  | 0.934 | 88.8 | 9.34  | 0.24 | 0.500 | 35.87 | 7.75 | 13.045 |
| OL | deployed  | 04/11/2023 | 9:30  | 0.974 | 89.6 | 9.40  | 0.24 | 0.501 | 35.61 | 7.76 | 13.126 |
| OL | retrieved | 05/09/2023 | 8:59  | 0.502 | 69.2 | 6.86  | 0.22 | 0.445 | 44.24 | 7.55 | 15.720 |
| OL | deployed  | 05/09/2023 | 9:16  | 0.489 | 67.8 | 6.70  | 0.22 | 0.453 | 43.34 | 7.54 | 15.911 |
| OL | retrieved | 06/06/2023 | 10:44 | 0.628 | 61.9 | 5.52  | 0.26 | 0.528 | 40.50 | 7.52 | 20.923 |
| OL | deployed  | 06/06/2023 | 11:01 | 0.589 | 58.4 | 5.20  | 0.26 | 0.529 | 46.57 | 7.52 | 20.934 |
| OL | retrieved | 07/11/2023 | 11:44 | 0.632 | 64.4 | 5.37  | 0.26 | 0.533 | 14.12 | 7.55 | 24.478 |
| OL | deployed  | 07/11/2023 | 12:01 | 0.689 | 64.5 | 5.38  | 0.26 | 0.532 | 13.43 | 7.56 | 24.464 |
| OL | retrieved | 08/15/2023 | 9:29  | 0.540 | 10.1 | 0.88  | 0.15 | 0.320 | 56.62 | 7.09 | 22.558 |
| OL | deployed  | 08/15/2023 | 9:46  | 0.512 | 10.9 | 0.94  | 0.15 | 0.318 | 53.25 | 7.07 | 22.577 |
| OL | retrieved | 09/12/2023 | 9:44  | 0.725 | 52.7 | 4.64  | 0.28 | 0.569 | 35.05 | 7.48 | 21.515 |
| OL | deployed  | 09/12/2023 | 10:07 | 0.792 | 48.8 | 4.30  | 0.28 | 0.568 | 63.52 | 7.46 | 21.483 |
| OL | retrieved | 10/11/2023 | 9:01  | 0.763 | 82.5 | 8.82  | 0.20 | 0.411 | 15.03 | 7.65 | 12.307 |
| OL | deployed  | 10/11/2023 | 9:16  | 1.135 | 84.1 | 8.97  | 0.20 | 0.411 | 14.70 | 7.66 | 12.375 |
| OL | deployed  | 11/07/2023 | n/a   | n/a   | n/a  | n/a   | n/a  | n/a   | n/a   | n/a  | n/a    |

| OL | retrieved | 11/07/2023 | n/a   | n/a   | n/a   | n/a   | n/a  | n/a   | n/a    | n/a  | n/a    |
|----|-----------|------------|-------|-------|-------|-------|------|-------|--------|------|--------|
| OL | deployed  | 12/12/2023 | n/a   | n/a   | n/a   | n/a   | n/a  | n/a   | n/a    | n/a  | n/a    |
| OL | retrieved | 12/12/2023 | n/a   | n/a   | n/a   | n/a   | n/a  | n/a   | n/a    | n/a  | n/a    |
| OL | deployed  | 01/02/2024 | 13:46 | 0.649 | 93.4  | 12.31 | 0.24 | 0.508 | 52.44  | 8.07 | 3.736  |
| WM | deployed  | 03/07/2023 | 11:02 | 0.893 | 93.8  | 11.73 | 0.16 | 0.338 | 113.23 | 7.80 | 5.776  |
| WM | retrieved | 04/11/2023 | 9:44  | 0.958 | 89.2  | 9.42  | 0.24 | 0.500 | 43.64  | 7.76 | 12.856 |
| WM | deployed  | 04/11/2023 | 10:01 | 0.970 | 90.5  | 9.55  | 0.24 | 0.499 | 38.46  | 7.77 | 12.878 |
| WM | retrieved | 05/09/2023 | 9:29  | 0.543 | 80.4  | 8.12  | 0.19 | 0.393 | 42.20  | 7.68 | 14.897 |
| WM | deployed  | 05/09/2023 | 9:46  | 0.531 | 76.3  | 7.66  | 0.19 | 0.401 | 48.13  | 7.61 | 15.158 |
| WM | retrieved | 06/06/2023 | 11:13 | 0.577 | 54.1  | 4.81  | 0.25 | 0.524 | 43.15  | 7.53 | 21.140 |
| WM | deployed  | 06/06/2023 | 11:20 | 0.587 | 53.7  | 4.77  | 0.25 | 0.524 | 46.67  | 7.52 | 21.166 |
| WM | retrieved | 07/11/2023 | 12:14 | 0.665 | 83.7  | 6.92  | 0.26 | 0.532 | 13.36  | 7.68 | 24.870 |
| WM | deployed  | 07/11/2023 | 12:31 | 0.688 | 90.6  | 7.48  | 0.26 | 0.532 | 12.87  | 7.74 | 24.965 |
| WM | retrieved | 08/15/2023 | 8:59  | 0.434 | 16.4  | 1.41  | 0.15 | 0.309 | 45.61  | 7.20 | 22.930 |
| WM | deployed  | 08/15/2023 | 9:16  | 0.463 | 11.6  | 1.00  | 0.15 | 0.314 | 40.03  | 7.10 | 22.748 |
| WM | retrieved | 09/12/2023 | 10:14 | 0.684 | 34.6  | 3.06  | 0.22 | 0.450 | 20.98  | 7.27 | 21.293 |
| WM | deployed  | 09/12/2023 | 10:31 | 0.691 | 36.4  | 3.21  | 0.23 | 0.486 | 24.81  | 7.32 | 21.347 |
| WM | retrieved | 10/11/2023 | 9:29  | 0.268 | 72.1  | 7.63  | 0.20 | 0.408 | 8.85   | 7.54 | 12.780 |
| WM | deployed  | 10/11/2023 | 9:46  | 0.475 | 70.3  | 7.45  | 0.20 | 0.408 | 9.60   | 7.55 | 12.731 |
| WM | deployed  | 11/07/2023 | n/a   | n/a   | n/a   | n/a   | n/a  | n/a   | n/a    | n/a  | n/a    |
| WM | retrieved | 11/07/2023 | n/a   | n/a   | n/a   | n/a   | n/a  | n/a   | n/a    | n/a  | n/a    |
| WM | deployed  | 12/12/2023 | n/a   | n/a   | n/a   | n/a   | n/a  | n/a   | n/a    | n/a  | n/a    |
| WM | retrieved | 12/12/2023 | n/a   | n/a   | n/a   | n/a   | n/a  | n/a   | n/a    | n/a  | n/a    |
| WM | deployed  | 01/02/2024 | 14:01 | 0.248 | 102.1 | 13.60 | 0.23 | 0.472 | 65.19  | 8.22 | 3.349  |