Old Woman Creek (OWC) NERR Site Water Quality Metadata

March through December, 2012 Latest Update: March 25, 2020

1. Principal Investigator & contact person:

Dr. David Klarer, Research Coordinator (until 07/31/2012)

E-mail: david.klarer@oldwomancreek.org

AFTER 08/01/2012 Andrea Tibbels, Research Technician

E-mail: Andrea.Tibbels@dnr.state.oh.us

Old Woman Creek SNP and NERR 2514 Cleveland Road East Huron, Ohio 44839 Phone: (419) 433-4601

2. Entry verification:

The data were directly downloaded from either a YSI PC6600 EDS (site DR) or a YSI PC6600 V2 (sites BR, OL, WM) data logger into the YSI Ecowatch for Windows program in the PC. The data were graphed and visually checked for any obvious outliers. Notes were made of any unusual data or faulty probes. The data were then exported as a comma-delimited format file (.csv or .cdf) to the CDMO where they underwent an automated primary QAQC and became part of the CDMO's online provisional database. During primary QAQC, data were flagged if they were missing, out of sensor range, or outside 2 or 3 standard deviations from the historical seasonal mean. The edited file was then returned to the Reserve where it was opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserted station codes, created metadata worksheets for flagged data and graphed the data for review. QAQC flags and codes were applied to the data, and any remaining pre and post deployment data were removed., and the files were appended. These resulting data files were then exported to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. When deployment overlap occurs between files, the data produced by the most recently calibrated sonde is generally accepted as being the most accurate. Further information on the QAQC flags and codes are presented in sections 11 and 12 of this metadata. The files are archived at OWC. Dr. David Klarer was responsible for both data logger deployment and data management at Old Woman Creek NERR during the 2011 deployment.

3. Research Objectives:

Measurements are taken every 15 minutes over two or three-week periods at four sites within the Old Woman Creek- three in the estuary proper- one in the upper reaches at Darrow Road (DR), one near the mouth, just south of State Route 6 (WM), and the third site upstream from the WM site (OL). The final site (BR) is just upstream of the first riffle zone above the estuary in Old Woman Creek proper. The purpose of this monitoring program is to document the role of this Great Lakes estuary in the Lake Erie ecosystem, particularly the estuary's role in mitigating storm flow that passes through it. The role of the OL site is to document the degree of intrusion by lake water during northerly winds and subsequent seiche events.

4. Research methods:

The YSI monitoring program began on at sites BR, DR, OL, and WM. . The sampling at all sites ended for the year on . Prior to deployment of the data loggers, a 4-inch diameter PVC pipe was bolted to an 8-foot long metal post that had been driven into the sediment. The logger trap at site DR was not bolted to an 8-foot metal post, but rather was suspended from the north side of the road bridge by metal chain. Each pipe had 4 vertical slits 3/4" wide drilled into it spanning the area of the probe guard on the data logger to insure that the probes would have direct contact with the surrounding waters. Additional field readings for dissolved oxygen, pH, temperature, turbidity, and specific conductance are taken when the instrument is changed at each site (see the Other Remarks Section). The data loggers are replaced in the field after a two or three-week deployment, depending on temperature and degree of fouling of the data loggers. All data loggers were the extended deployment loggers. The data was retrieved from each data logger and each data logger was recalibrated (according to the directions in the YSI Operations Manual) before being returned to the field. Conductivity, turbidity (2 point calibration using distilled water for zero turbidity and a YSI standard for the other turbidity point), and pH (2 point calibration) are calibrated using commercial standards. These standards were prepared prior to each deployment. The data loggers at site WM has a vented water level sensors while the loggers at sites BR, DR, and OL have non-vented depth sensors. At all four sites the ROX optical dissolved oxygen probe was used. The calibration logs provide sensor information. A Sutron Sat-Link2 transmitter was installed at Site OL during October 2006. This system transmits data to the NOAA Goes satellite, NESDIS ID# 3B02849A. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at http://cdmo.baruch.sc.edu.

5. Site Location and Character:

Old Woman Creek National Estuarine Research Reserve is located on the southern shore of Lake Erie, east of the city of Huron, Ohio (Latitude 41° 23'N; Longitude 82° 33'W). Land use in the Old Woman Creek (OWC) watershed is primarily row crop agriculture. Other than the non-point source pollutants coming into the estuary from these agricultural practices and from the town of Berlin Heights, there are no other major pollution sources in the estuary. Salinity in Old Woman Creek is normally 1 ppt. or less, although it will rise, on occasion, to nearly 2 ppt. The tidal range in Lake Erie (and therefore in the estuary) is on the order of 4 cm or less. Water levels in the estuary and in the creek are extremely variable, with changes occurring daily, seasonally and annually due to changing lake levels, seiches on the lake, storm runoff, and the mouth closing and opening through the year.

The data logger at the State Route 6 (WM) site (Latitude 41° 22' 57" N, Longitude 82° 30'54" W) is very close to the mouth of Old Woman Creek. In this portion of the Reserve, the creek is very shallow but extends over a large surface area. This site frequently experiences influx of Lake Erie waters. The bottom sediments at this site are silty clay. At the beginning of the deployment for 2012, there was no rooted aquatic vegetation directly adjacent to the site, although there was both emergent and submerged vegetation within 3 meters of the site. The data logger is about .18 meters above the bottom sediments. With the deployment beginning on

24 October, 2012, a small guard was used thus effectively lowering the logger 5 cm in the trap. The data logger at site OL (Latitude 41° 22′ 55″ N, Longitude 82° 30′51″ W) is in the lower reaches of the estuary. This site is not in direct sight of the mouth, so northerly winds and resulting seiche activities should be less noticeable at this site. The bottom sediments are silty clay. This site is located about 5 meters north of a *Nelumbo lutea* bed, but, there were no plants immediately adjacent to the data logger. In March 2009, a new logger site was established 5 meters north of the original site due to damage of the original site by a winter storm. In 2010, this temporary site became the OL site. At this site, the base of logger is 26 cm above the sediment. There are one or two leaves of *N. lutea* adjacent to this temporary logger site. This is the site that is telemetered to the GOES satellite. On May 15, between deployments, a new trap was installed about 1 meter south-east of the most recent site, again due to storm damage. The base of the logger is about 25 cm above the bottom. With the deployment beginning on 24 October, 2012, a small guard was used thus effectively lowering the logger 5 cm in the trap.

The data logger at site BR (Latitude 41° 20'54" N, Longitude 82° 30'30"W) is located in the lower portion of the creek proper. Just upstream from the data logger, Berlin Road crosses Old Woman Creek. Site BR is just upstream of the first riffle above the estuary. Unlike the other three sites, Lake Erie water levels have no impact on this site. The bottom of the creek at this site is a combination of rocks interspersed with some clay-silt that has been washed in from upstream. There are no aquatic macrophytes at or near this site. The logger is 18 cm above the bottom at this site. Short guards were used on all loggers at this site through the year. Wire mesh fencing around trap was installed to diminish debris build-up around the logger. The logger trap was destroyed by storm runoff during the last part of May and was reinstalled on 3 June, 2011 at about 10:15 am. The logger is now 22 cm above the bottom. The stream bottom under the logger was excavated on 17 July, 2011 at about 07:40 and the logger and trap were lowered about 18 cm. The bottom of the logger is now about 10 cm above the bottom of the creek. When the loggers were exchanged on 7 August, 2011 (about 07:55), the logger was lowered another 5 cm. The logger is 5 cm above the stream bottom. When the loggers were exchanges on 24 July, 2012, the logger trap was lowered 5 cm. Since last year the streambed under the logger has been eroded out slightly and so the logger after this latest change was still about 5 cm above the bottom.

The data logger at site DR (Latitude 41° 21′54″N, Longitude 82° 30′ 17″W) is at the southern boundary of the reserve. The logger trap is suspended from western most of the two center guard rail supports on the north side of the Darrow Road bridge near the deepest part of the creek channel.. At this site the creek is relatively narrow. Although water direction and flow is influenced at this site by changes in Lake Erie water levels, this site doesn't have direct contact with Lake Erie waters. The bottom sediments at his site are silty clay. There is no rooted aquatic vegetation near or upstream from this site. The data logger is about .20 meters above the bottom at this site. Prior to deployment on 04/14/2011 (08:15) the trap was raised about 5 cm. Beginning with the deployment on 06/ 26/2011 (08:00) the longer guard was used on the logger thus effectively raising the logger 5 cm in the water column. The trap was raised 6 cm on October 3, 2011 between 10:15 and 10:30. The trap was moved approximately 2m to the east and lowered 22cm on October 22, 2012 at about 10:50. With the deployment beginning on 24 October, 2012, a small guard was used thus effectively lowering the logger another 5 cm in the trap.

6. Data collection periods:

Sampling at WM began on March 18 at 08:45. The logger was pulled for the year at 09:00 on 17 December 2012. Sampling at OL began on March 18 at 08:30, and ceased on December 17 at

10:00. Sampling at BR began on March 18 at 07:45 and ceased on December 17 at 10:30. Sampling at DR began on March 18 at 07:30. The logger was pulled for the year on December 17 at 10:45. Specific deployment dates are listed below.

Site	Deployed	Pulled
WM	3/18/2012 (08:45)	05/15/2012 (12:15)
	05/15/2012 (12:30)	06/13/2012 (07:45)
	06/13/2012 (08:00)	07/01/2012 (08:30)
	07/01/2012 (09:00)	07/24/2012 (08:00)
	07/24/2012 (08:15)	08/15/2012 (08:15)
	08/15/2012 (08:30)	09/12/2012 (08:15)
	09/12/2012 (08:30)	10/03/2012 (08:15)
	10/03/2012 (08:30)	10/24/2012 (09:15)
	10/24/2012 (09:30)	11/06//2012 (10:15)
	11/06/2012 (10:30)	11/28/2012 (11:15)
	11/28/2012 (11:30)	12/17/2012 (09:00)
OL	3/18/2012 (08:30)	05/15/2012 (11:45)
OL	05/15/2012 (08.50)	06/13/2012 (07:30)
	06/13/2012 (12.13)	07/01/2012 (07:30)
	07/01/2012 (08:45)	07/24/2012 (07:45)
	07/24/2012 (08:00)	08/15/2012 (08:00)
	08/15/2012 (08:30)	09/12/2012 (08:00)
	09/12/2012 (08:15)	10/03/2012 (08:15)
	10/03/2012 (08:30)	10/24/2012 (09:15)
	10/24/2012 (09:30)	11/06/2012 (10:15)
	11/06/2012 (10:30)	11/28/2012 (10:13)
	11/28/2012 (12:00)	12/17/2012 (10:00)
	11/26/2012 (12.00)	12/1//2012 (10.00)
BR	3/18/2012 (07:45)	04/22/2012 (08:00)
	4/22/2012 (08:15)	5/15/2012 (07:45)
	5/16/2012 (08:00)	06/13/2012 (09:15)
	06/13/2012 (09:30)	07/01/2012 (07:45)
	07/01/2012 (08:00)	07/24/2012 (09:00)
	07/24/2012 (09:15)	08/15/2012 (09:30)
	08/15/2012 (09:45)	09/12/2012 (09:30)
	09/12/2012 (09:45)	10/03/2012 (10:00)
	10/03/2012 (10:15)	10/24/2012 (08:15)
	10/24/2012 (08:30)	11/06/2012 (11:00)
	11/06/2012 (11:15)	11/28/2012 (09:45)
	11/28/2012 (10:00)	12/17/2012 (10:30)
DR	3/18/2012 (07:30)	04/22/2012 (07:45)
	4/22/2012 (08:00)	05/15/2012 (07:30)
	05/15/2012 (07:45)	06/13/2012 (09:00)
	06/13/2012 (09:15)	07/01/2012 (07:30)
	07/01/2012 (07:45)	07/24/2012 (08:45)
	07/24/2012(09:00)	08/15/2012 (09:15)
	08/15/2012 (09:30)	09/12/2012 (10:00)
	` /	, ,

09/12/2012 (10:15)	10/03/2012 (10:15)
10/03/2012 (10:30)	10/24/2012 (08:30)
10/24/2012 (08:45)	11/06/2012 (11:15)
11/06/2012 (11:30)	11/28/2012 (09:30)
11/28/2012 (09:45)	12/17/2012 (10:45)

7. Distribution

NOAA/ERD retains the right to analyze, synthesize, and publish summaries of the NERRS System-wide Monitoring Program data. The OWC Research Coordinator (RC) retains the right to be fully credited for having collected and processed the data. Following academic courtesy standard, the RC and the NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration.

The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined in the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government and the State of Ohio do not assume liability to the Recipient or third persons, nor will the Federal government or the State of Ohio reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see section 1, Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under general information link on CDMO homepage) and online at the CDMO homepage http://cdmo.baruch.sc.edu/. Data are available in text tab-delimited format.

8. Associated projects:

Replicate samples for chemical analysis of the water are collected at each site every time the data loggers are changed. Samples for phytoplankton determination are collected at the same time at sites near two of the data logger deployment sites (DR and WM). Additionally, a 26 hour sampling regime (samples are collected at 2 hour intervals over the 26 hours) is conducted at the WM site once during each month.

II. Physical Structure and Descriptors:

9. Sensor specifications:

YSI 6600EDS and YSI 6600 V2 dataloggers

Parameter: Temperature

Units: Celsius (C)

Sensor Type: Thermistor

Model #: 6560 Range: -5 to 45 °C Accuracy: +/-0.15 °C Resolution: 0.01 °C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: 4-electrode cell with autoranging

Model #: 6560

Range: 0 to 100 mS/cm

Accuracy: $\pm -0.5\%$ of reading ± 0.001 mS/cm

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependent)

Parameter: Salinity

Units: parts per thousand (ppt)

Sensor Type: Calculated from conductivity and temperature

Range: 0 to 70 ppt

Accuracy: +/- 1.0% of reading or 0.1 ppt, whichever is greater

Resolution: 0.01 ppt

Parameter: Dissolved Oxygen % saturation

Units: percent air saturation (%)

Sensor Type: Rapid Pulse – Clark type, polarographic (YSI 6600 EDS loggers only)

Model #: 6562

Range: 0 to 500 % air saturation

Accuracy: 0-200 % air saturation, +/- 2 % of the reading or 2 % air saturation, whichever is

greater; 200-500 % air saturation, +/- 6 % of the reading

Resolution: 0.1 % air saturation

Parameter: Dissolved Oxygen mg/L (Calculated from % air saturation, temperature and salinity)

Units: milligrams per Liter (mg/L)

Sensor Type: Rapid Pulse – Clark type, polarographic (YSI 6600 EDS loggers only)

Model #: 6562 Range: 0 to 50 mg/L

Accuracy: 0 to 20 mg/L, +/- 2 % of the reading or 0.2 mg/L, whichever is greater; 20 to 50 mg/L,

+/- 6 % of the reading Resolution: 0.01 mg/L

Parameter: Dissolved Oxygen % saturation

Units: percent air saturation (%)

Sensor Type: Optical probe with mechanical cleaning Model #: 6150 ROX (YSI 6600 V2 loggers only)

Range: 0 to 500% air saturation

Accuracy: 0-200% air saturation- +/- 1% of the reading or 1% air saturation, whichever is greater

200-500% air saturation- +/- 15% of the reading

Resolution: 0.1% air saturation

Parameter: Dissolved Oxygen mg/L (Calculated from % air saturation, temperature and salinity)

Units: milligrams per Liter (mg/L)

Sensor Type: Optical probe with mechanical cleaning Model #: 6150 ROX (YSI 6600 V2 loggers only)

Range: 0-50 mg/L

Accuracy: 0-20 mg/L- +/- 2% of the reading or 0.2 mg/L, whichever is greater

20-50 mg/L- \pm 6% of the reading

Resolution: 0.01 mg/L

Parameter: Non-Vented Level – Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 30 ft (9.1 m) Accuracy: +/- 0.06 ft (0.018 m) Resolution: 0.001 ft (0.001 m)

Parameter: Vented Level – Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 30 ft (9.1 m)

Accuracy 0-10 ft: +/- 0.01 ft (0.003 m) Accuracy 10-30 ft: +/- 0.06 ft (0.018 m)

Resolution: 0.001 ft (0.001 m)

Parameter: pH (EDS probe)

Units: units

Sensor Type: Glass combination electrode

Model #: 6561 Range: 0 to 14 units Accuracy: +/- 0.2 units Resolution: 0.01 units

Parameter: Turbidity

Units: nephelometric turbidity units (NTU)

Sensor Type: Optical, 90 ° scatter, with mechanical cleaning

Model #: 6136

Range: 0 to 1000 NTU

Accuracy: +/- 5 % reading or 2 NTU (whichever is greater)

Resolution: 0.1 NTU

Dissolved Oxygen Qualifier (Rapid Pulse / Clark type sensor):

The reliability of dissolved oxygen (DO) data collected with the rapid pulse / Clark type sensor after 96 hours post-deployment for non-EDS (Extended Deployment System) data sondes may be problematic due to fouling which forms on the DO probe membrane during some deployments (Wenner et al. 2001). Some Reserves utilize the YSI 6600 EDS data sondes, which increase DO accuracy and longevity by reducing the environmental effects of fouling. Optical DO probes have further improved data reliability. The user is therefore advised to

consult the metadata for sensor type information and to exercise caution when utilizing rapid pulse / Clark type sensor DO data beyond the initial 96-hour time period. Potential drift is not always problematic for some uses of the data, i.e. periodicity analysis. It should also be noted that the amount of fouling is very site specific and that not all data are affected. If there are concerns about fouling impacts on DO data beyond any information documented in the metadata and/or QAQC flags/codes, please contact the Research Coordinator at the specific NERR site regarding site and seasonal variation in fouling of the DO sensor.

Depth Qualifier:

The NERR System-Wide Monitoring Program utilizes YSI data sondes that can be equipped with either vented or non-vented depth/level sensors. Readings for both vented and non-vented sensors are automatically compensated for water density change due to variations in temperature and salinity; but for all non-vented depth measurements, changes in atmospheric pressure between calibrations appear as changes in water depth. The error is equal to approximately 1.03 cm for every 1 millibar change in atmospheric pressure, and is eliminated for vented sensors because they are vented to the atmosphere throughout the deployment time interval.

Beginning in 2006, NERR SWMP standard calibration protocol calls for all non-vented depth sensors to read 0 meters at a (local) barometric pressure of 1013.25 mb (760 mm/hg). To achieve this, each site calibrates their depth sensor with a depth offset number, which is calculated using the actual atmospheric pressure at the time of calibration and the equation provided in the SWMP calibration sheet or digital calibration log. This offset procedure standardizes each depth calibration for the entire NERR System. If accurate atmospheric pressure data are available, non-vented sensor depth measurements at any NERR can be corrected.

In 2010, the CDMO began automatically correcting depth/level data for changes in barometric pressure as measured by the Reserve's associated meteorological station during data ingestion. These corrected depth/level data are reported as cDepth and cLevel, and are assigned QAQC flags and codes based on QAQC protocols. Please see sections 11 and 12 for QAQC flag and code definitions.

Salinity Units Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by Reserves. While the 6600 series sondes report salinity in parts per thousand (ppt) units, the EXO sondes report practical salinity units (psu). These units are essentially the same and for SWMP purposes are understood to be equivalent, however psu is considered the more appropriate designation. Moving forward the NERR System will assign psu salinity units for all data regardless of sonde type.

Turbidity Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by Reserves. While the 6600 series sondes report turbidity in nephelometric turbidity units (NTU), the EXO sondes use formazin nephelometric units (FNU). These units are essentially the same but indicate a difference in sensor methodology, for SWMP purposes they will be considered equivalent. Moving forward, the NERR System will use FNU/NTU as the designated units for all turbidity data regardless of sonde type. If turbidity units and sensor methodology are of concern, please see the Sensor Specifications portion of the metadata.

10. Coded variable definitions:

Sampling Station	Sampling site code	Station code
State Route 6	WM	owcwmwq
Lower Estuary	OL	owcolwq
Berlin Road	BR	owebrwq
Darrow Road	DR	owedrwq

11. QAQC flag

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, -2, 2, and 3 flags are applied automatically to indicate data that is above or below sensor range, missing, or outside 2 or 3 standard deviations from the historical seasonal mean. All remaining dat are then flagged 0, as "good". During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Open- reserved for later flag
- 0 Good Data
- 1 Suspect Data

- 2 Data Outside 2 Standard Deviations from the historical seasonal mean
- 3 Data Outside 3 Standard Deviations from the historical seasonal mean
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12. QAQC code definitions

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F Record column.

General Errors

OIO	T T	•	1 1	1	1 .	•
GIC	No	instrument	denio	ved	due to	1ce
OIC	110	IIIbu aiiiciit	acpio	y Cu	auc to	100

GIM Instrument malfunction

GIT Instrument recording error; recovered telemetry data

GMC No instrument deployed due to maintenance/calibration

GNF Deployment tube clogged / no flow

GOW Out of water event

GPF Power failure / low battery

GQR Data rejected due to QA/QC checks

GSM See metadata

Corrected Depth/Level Data Codes

GCC	Calculated wit	h data tha	t were corrected	during	$\Omega \Delta / C$	\mathcal{C}
UCC	Calculated wit	II uata ilia	il wele collected	aurme	OA/C	\mathcal{L}

GCM Calculated value could not be determined due to missing data

GCR Calculated value could not be determined due to rejected data

GCS Calculated value suspect due to questionable data

GCU Calculated value could not be determined due to unavailable data

Sensor Errors

CDO	Blocked	
SBO	Віоскеа	onuc

SCF Conductivity sensor failure

SCS Chlorophyll spike

SDF Depth port frozen

SDG Suspect due to sensor diagnostics

SDO DO suspect

SDP DO membrane puncture

SIC Incorrect calibration / contaminated standard

SNV Negative value

SOW Sensor out of water

SPC Post calibration out of range

SQR Data rejected due to QAQC checks

SSD Sensor drift

SSM Sensor malfunction

SSR Sensor removed / not deployed

STF Catastrophic temperature sensor failure

STS Turbidity spike

SWM Wiper malfunction / loss

Comments

CAB* Algal bloom

CAF Acceptable calibration/accuracy error of sensor

CAP Depth sensor in water, affected by atmospheric pressure

CBF Biofouling

CCU Cause unknown

CDA* DO hypoxia (<3 mg/L)

CDB* Disturbed bottom

CDF Data appear to fit conditions

CFK* Fish kill

CIP* Surface ice present at sample station

CLT* Low tide

CMC* In field maintenance/cleaning

CMD* Mud in probe guard

CND New deployment begins

CRE* Significant rain event

CSM* See metadata

CTS Turbidity spike

CVT* Possible vandalism/tampering

CWD* Data collected at wrong depth

CWE* Significant weather event

Sp. Cond.

13. Post deployment information:

Site

Date

11/06/2012

11/28/2012

1.385

1.487

End of Deployment Post-calibration Readings in Standard Solutions: Dissolved oxygen standard is in parentheses following the DO reading. Depth is always 0.0 meters for the vented loggers. For the unvented loggers, the depth reading in parentheses after the first depth reading is the expected depth reading when correcting for changes in barometric pressure. The specific conductivity standard is 1.413 mS/cm. If the conductivity ports were inhabited by Chironomid larvae, the sp cond reading after clearing the ports is in parentheses after the initial Sp. Cond reading. The pH standards are 7.00 and 10.00 (both are corrected for temperature). The primary turbidity standard is zero, and the second standard is in parentheses. An asterisk after the higher turbidity reading signifies problems with the wiper. The turbidity reading after cleaning is in parentheses. Complete post deployment data are in the calibration sheets

pН

Turb

7.08, 10.01 4.1, 110.1 (109) -.208 (-.196)

7.00, 10.03 2.2, 108.1 (109) -.029 (-.097)

Depth

DO(%)

		-	` /	-		-
WM						
	05/15/2012	1.421	96.9 (97.8)	7.09, 10.06	0.9,109.7 (109)	011
	06/13/2012	1.396	91.3 (98.6)	6.88,9.89	1.3,111.5 (109)	015
	07/01/2012	1.205(1.410)*	96.0 (98.2)	7.05, 10.02	0.5,108.7 (109)	0.24
	07/24/2012	1.101(1.399)*	94.9 (97.7)	7.06, 10.04	1.9,112.3 (109)	011
	08/15/2012	1.384	93.0 (97.9)	6.87, 9.74	1.5, 112.0 (109)	073
	09/12/2012	1.376	93.7 (98.9)	7.12, 10.01	1.8, 110.3 (109)	010
	10/03/2012	1.417	98.6 (98.3)	6.97, 9.83	3.7, 114.6 (109)	0
	10/24/2012	No data collec	ted due to logg	er failure		
	11/06/2012	1.443	100.6 (98.1)	7.19, 10.21	1.2, 112.0 (109)	0
	11/28//2012	1.478	98.8 (98.1)	7.00, 9.96	1.1, 108.6 (109)	0
	12/17/2012	1.391	121.6 (98.1)	6.84, 10.13	0.3, 109.2 (109)	.003
Site	Date	Sp. Cond.	DO(%)	pН	Turb	Depth
	Date	Sp. Cond.	DO(%)	рН	Turb	Depth
Site OL		•	,	•		-
	05/15/2012	1.406	96.6 (97.8)	7.11, 10.07	0.7, 107.5 (109)	230 (227)
	05/15/2012 06/13/2012	1.406 1.410	96.6 (97.8) 94.3 (98.5)	7.11, 10.07 7.14, 10.12	0.7, 107.5 (109) 0.8, 109.5 (109)	230 (227) 148 (140)
	05/15/2012 06/13/2012 07/01/2012	1.406 1.410 1.405	96.6 (97.8) 94.3 (98.5) 94.7 (98.0)	7.11, 10.07 7.14, 10.12 7.09, 10.06	0.7, 107.5 (109) 0.8, 109.5 (109) 0.1, 108.5 (109)	230 (227) 148 (140) 217 (218)
	05/15/2012 06/13/2012 07/01/2012 07/24/2012	1.406 1.410 1.405 1.272 (1.400*)	96.6 (97.8) 94.3 (98.5) 94.7 (98.0) 95.0 (97.7)	7.11, 10.07 7.14, 10.12 7.09, 10.06 7.04, 10.12	0.7, 107.5 (109) 0.8, 109.5 (109) 0.1, 108.5 (109) 1.3, 109.2 (109)	230 (227) 148 (140) 217 (218) 239 (254)
	05/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012	1.406 1.410 1.405 1.272 (1.400*) 1.267 (1.393*)	96.6 (97.8) 94.3 (98.5) 94.7 (98.0) 95.0 (97.7) 90.0 (97.6)	7.11, 10.07 7.14, 10.12 7.09, 10.06 7.04, 10.12 7.08, 10.11	0.7, 107.5 (109) 0.8, 109.5 (109) 0.1, 108.5 (109) 1.3, 109.2 (109) 1.2, 109.8 (109)	230 (227) 148 (140) 217 (218) 239 (254) -210 (211)
	05/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012 09/12/2012	1.406 1.410 1.405 1.272 (1.400*) 1.267 (1.393*) (1.524 *)	96.6 (97.8) 94.3 (98.5) 94.7 (98.0) 95.0 (97.7) 90.0 (97.6) 91.3 (98.7)	7.11, 10.07 7.14, 10.12 7.09, 10.06 7.04, 10.12 7.08, 10.11 6.98, 9.88	0.7, 107.5 (109) 0.8, 109.5 (109) 0.1, 108.5 (109) 1.3, 109.2 (109) 1.2, 109.8 (109) 0.3, 111.4 (109)	230 (227) 148 (140) 217 (218) 239 (254) -210 (211) 140 (111)
	05/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012	1.406 1.410 1.405 1.272 (1.400*) 1.267 (1.393*)	96.6 (97.8) 94.3 (98.5) 94.7 (98.0) 95.0 (97.7) 90.0 (97.6)	7.11, 10.07 7.14, 10.12 7.09, 10.06 7.04, 10.12 7.08, 10.11	0.7, 107.5 (109) 0.8, 109.5 (109) 0.1, 108.5 (109) 1.3, 109.2 (109) 1.2, 109.8 (109)	230 (227) 148 (140) 217 (218) 239 (254) -210 (211) 140 (111) 088 (177)

99.6 (99.7)

99.7, (99.2)

	12/17/2012	1.440	102.3, (98.0)	7.03, 10.04	2.3, 112.0 (1090	140 (178)
Site	Date	Sp. Cond.	DO(%)	pН	Turb	Depth
BR	04/22/2012	1.404	97.7 (97.9)	7.11, 10.10	0.7, 108.6 (109)	215 (223)
Dit	05/15/2012	1.414	95.8 (97.8)	7.05, 10.04	0.4, 106.0 (109)	235 (228)
	06/13/2012	1.401	90.7 (98.6)	7.21, 10.02	0, 92.3 (109)	120 (129)
	07/01/2012	1.410	95.0 (98.1)	7.05, 10.09	0, 107.5 (109)	207 (207)
	07/24/2012	1.401	94.6 (97.8)	broken	0.1, 107.7 (109)	221 (223)
	08/15/2012	1.371	86.2 (98.0)	7.13, 10.08	0.9, 65.5(109)	199 (207)
	09/12/2012	1.342	91.8 (98.8)	7.10, 10.04	1.4, 112.0 (109)	131 (124)
	10/03/2012	1.413	95.3 (95.8)	7.00, 9.94	0.6, 108.9 (109)	174 (182)
	10/24/2012	1.413	92.9 (95.4)	7.09, 9.99	1.0, 111.9 (109)	196 (181)
	11/06/2012	1.440	98.5 (97.8)	7.02, 9.96	0.4, 109.3 (109)	NAN (223)
	11/28/2012	1.427	98.5 (99.8)	7.11, 10.07	0.2, 108.5 (109)	099 (095)
	12/17/2012	1.396	99.8 (98.3)	7.29, 10.12	0.4, 82.2 (109)	197 (192)
			, ,	ŕ	, , ,	,
Site	Date	Sp. Cond.	DO(%)	pН	Turb	Depth
		-	, ,	-		•
Site DR	04/22/2012	1.406	96.3 (97.9)	7.11, 10.12	0.3, 111.0 (109)	232 (222)
	04/22/2012 05/15/2012	1.406 1.413	96.3 (97.9) 96.4 (97.8)	7.11, 10.12 6.96, 9.92	0.3, 111.0 (109) 0.8, 107.8 (109)	232 (222) 237 (226)
	04/22/2012 05/15/2012 06/13/2012	1.406 1.413 1.366	96.3 (97.9) 96.4 (97.8) 97.9 (98.7)	7.11, 10.12 6.96, 9.92 7.11, 10.05	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109)	232 (222) 237 (226) 113 (129)
	04/22/2012 05/15/2012 06/13/2012 07/01/2012	1.406 1.413 1.366 1.399	96.3 (97.9) 96.4 (97.8) 97.9 (98.7) 94.6 (98.0)	7.11, 10.12 6.96, 9.92 7.11, 10.05 7.04, 10.02	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109) 0.2, 107.7 (109)	232 (222) 237 (226) 113 (129) 207 (211)
	04/22/2012 05/15/2012 06/13/2012 07/01/2012 07/24/2012	1.406 1.413 1.366 1.399 1.388	96.3 (97.9) 96.4 (97.8) 97.9 (98.7) 94.6 (98.0) 90.6 (97.8)	7.11, 10.12 6.96, 9.92 7.11, 10.05 7.04, 10.02 7.13, 10.13	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109) 0.2, 107.7 (109) 1.3, 102.3 (109)	232 (222) 237 (226) 113 (129) 207 (211) 217 (224)
	04/22/2012 05/15/2012 06/13/2012 07/01/2012	1.406 1.413 1.366 1.399	96.3 (97.9) 96.4 (97.8) 97.9 (98.7) 94.6 (98.0) 90.6 (97.8) 89.7 (97.8)	7.11, 10.12 6.96, 9.92 7.11, 10.05 7.04, 10.02 7.13, 10.13 6.84, 9.93	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109) 0.2, 107.7 (109) 1.3, 102.3 (109) 0.8, 108.7 (109)	232 (222) 237 (226) 113 (129) 207 (211) 217 (224) 207 (213)
	04/22/2012 05/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012	1.406 1.413 1.366 1.399 1.388 1.346	96.3 (97.9) 96.4 (97.8) 97.9 (98.7) 94.6 (98.0) 90.6 (97.8) 89.7 (97.8) 93.3 (98.9)	7.11, 10.12 6.96, 9.92 7.11, 10.05 7.04, 10.02 7.13, 10.13 6.84, 9.93 7.02, 10.10	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109) 0.2, 107.7 (109) 1.3, 102.3 (109) 0.8, 108.7 (109) 0.5, 111.7 (109)	232 (222) 237 (226) 113 (129) 207 (211) 217 (224) 207 (213) 124 (120)
	04/22/2012 05/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012 09/12/2012	1.406 1.413 1.366 1.399 1.388 1.346 1.490	96.3 (97.9) 96.4 (97.8) 97.9 (98.7) 94.6 (98.0) 90.6 (97.8) 89.7 (97.8)	7.11, 10.12 6.96, 9.92 7.11, 10.05 7.04, 10.02 7.13, 10.13 6.84, 9.93	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109) 0.2, 107.7 (109) 1.3, 102.3 (109) 0.8, 108.7 (109)	232 (222) 237 (226) 113 (129) 207 (211) 217 (224) 207 (213) 124 (120) 179 (178)
	04/22/2012 05/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012 09/12/2012 10/03/2012	1.406 1.413 1.366 1.399 1.388 1.346 1.490 1.460	96.3 (97.9) 96.4 (97.8) 97.9 (98.7) 94.6 (98.0) 90.6 (97.8) 89.7 (97.8) 93.3 (98.9) 101.6 (98.7)	7.11, 10.12 6.96, 9.92 7.11, 10.05 7.04, 10.02 7.13, 10.13 6.84, 9.93 7.02, 10.10 7.05, 9.99	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109) 0.2, 107.7 (109) 1.3, 102.3 (109) 0.8, 108.7 (109) 0.5, 111.7 (109) 2.1, 109.3 (109)	232 (222) 237 (226) 113 (129) 207 (211) 217 (224) 207 (213) 124 (120) 179 (178) 204 (.182)
	04/22/2012 05/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012 09/12/2012 10/03/2012 10/24/2012	1.406 1.413 1.366 1.399 1.388 1.346 1.490 1.460 1.383	96.3 (97.9) 96.4 (97.8) 97.9 (98.7) 94.6 (98.0) 90.6 (97.8) 89.7 (97.8) 93.3 (98.9) 101.6 (98.7) 93.3 (98.2)	7.11, 10.12 6.96, 9.92 7.11, 10.05 7.04, 10.02 7.13, 10.13 6.84, 9.93 7.02, 10.10 7.05, 9.99 7.04, 9.99	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109) 0.2, 107.7 (109) 1.3, 102.3 (109) 0.8, 108.7 (109) 0.5, 111.7 (109) 2.1, 109.3 (109) 1.0, 110.0 (109)	232 (222) 237 (226) 113 (129) 207 (211) 217 (224) 207 (213) 124 (120) 179 (178)
	04/22/2012 05/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012 09/12/2012 10/03/2012 10/24/2012 11/06/2012	1.406 1.413 1.366 1.399 1.388 1.346 1.490 1.460 1.383 1.461	96.3 (97.9) 96.4 (97.8) 97.9 (98.7) 94.6 (98.0) 90.6 (97.8) 89.7 (97.8) 93.3 (98.9) 101.6 (98.7) 93.3 (98.2) 99.1 (98.3)	7.11, 10.12 6.96, 9.92 7.11, 10.05 7.04, 10.02 7.13, 10.13 6.84, 9.93 7.02, 10.10 7.05, 9.99 7.04, 9.99 7.15, 10.25	0.3, 111.0 (109) 0.8, 107.8 (109) 1.0, 109.8 (109) 0.2, 107.7 (109) 1.3, 102.3 (109) 0.8, 108.7 (109) 0.5, 111.7 (109) 2.1, 109.3 (109) 1.0, 110.0 (109) 2.7, 109.4 (109)	232 (222) 237 (226) 113 (129) 207 (211) 217 (224) 207 (213) 124 (120) 179 (178) 204 (.182) 144 (190)

^{*} after cleaning

14. Other Remarks:

Data logger at site WM, failed to turn on during the 10/03/2012-10/24/2012 deployment, therefore no data was collected during this period.

Data logger at site OL, was programmed to collect data at 4 second intervals instead of 15 minute intervals, therefore only two days of data were collected before the logger ran out of memory.

Field data collected at time of data logger swap is reported below. Specific conductivity was taken in the laboratory immediately after returning from the field. Temperature is reported in Degrees C, specific conductivity in millimhos, and oxygen in milligrams/liter.

Site	Date	Temp	Sp. Cond.	DO(mg/l)	pН
WM	3/18/2012	15.7	.432	6.02	7.48
	5/15/2012	23.8	.634	6.20	7.40

	06/13/2012 07/01/2012 07/24/2012 08/15/2012 09/12/2012 10/03/2012 10/24/2012 11/06/2012 11/28/2012 12/17/2012	21.0 27.4 27.9 27.7 20.2 22.1 21.3 11.5 6.2 5.8	.303 .342 .308 .346 .445 .537 .549 .544 .613	7.88 8.25 5.56 3.8 5.98 6.55 4.76 10.25 11.55 12.16	8.10 7.51 7.62 7.60 7.32 7.06 7.64 7.81 7.99 7.74
Site	Date	Temp	Sp. Cond.	DO(mg/l)	pН
OL	3/18/2012 5/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012 09/12/2012 10/03/2012 10/24/2012 11/06/2012 11/28/2012 12/17/2012	13.7 23.5 21.2 26.8 27.7 27.2 20.0 21.6 21.2 8.0 6.0 5.8	.474 .645 .304 .344 .310 .342 .444 .536 .562 .542	8.98 6.58 8.10 8.18 5.20 4.30 6.31 5.64 5.63 10.90 12.83	7.69 7.32 8.12 7.43 7.44 7.38 7.30 7.08 7.57 7.95 8.16 7.88
	12/1//2012	3.8	.629	12.74	7.00
Site	Date	Temp	Sp. Cond.	DO(mg/l)	7.88 pH
Site BR					
	Date 3/18/2012 4/22/2012 5/15/2012 06/13/2012 07/01/2012 07/24/2012 08/15/2012 09/12/2012 10/03/2012 11/06/2012 11/28/2012	Temp 12.7 9.7 15.0 18.5 22.2 24.2 26.1 22.5 23.8 20.0 10.1 5.7	\$\mathbb{Sp. Cond.}\$.498 .686 .683 .866 .719 .822 .681 .574 .598 .794 .538 .631	9.47 10.07 8.02 5.79 6.38 6.59 6.50 11.61 7.56 5.93 11.30 12.89	7.86 7.67 7.65 7.48 7.42 7.40 7.54 7.58 7.42 7.75 7.88 8.06

07/01/2012	24.3	.647	6.42	7.55
07/24/2012	26.4	.624	6.44	7.72
08/15/2012	25.4	.700	4.0	7.56
09/12/2012	29.7	.500	6.45	7.26
10/03/2012	21.5	.490	5.94	7.38
10/24/2012	20.8	.765	2.77	7.60
11/06/2012	10.4	.537	10.86	7.90
11/28/2012	6.14	.631	13.06	8.12
12/17/2012	6.60	.606	11.88	7.99

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

It was not possible to change the loggers at site WM and OL during April, as the estuary mouth was closed and the water in the estuary was too high to retrieve the loggers at these two sites. The loggers were changed two days after the mouth opened and the water level dropped about 1 meter.

Turbidity spikes at sites OL and WM, particularly from April through June, could be due to biological activity, especially activity of *Cyprinus carpio* L.

- BR Depth data during the 10/24 deployment were impacted by a calibration issue. The exact calibration issue is unknown.
- OL turbidity data is slightly lower than normal during the 9/12 deployment. The post for 123 was ok, but the post for 0 was -5.3. We believe there was an issue with the turbidity probe during this deployment due to that.
- OL The sonde deployed from 10/3 to 10/4 was set to record for 4 seconds instead of every 15 minutes. There was no DO mg/L data available and the DO% and depth data don't appear to be correct. We are uncertain if the depth and DO issues are related to the sonde being set to record every 4 seconds or if there were other issues with the sonde.
- WM Depth is odd from 5/15 to 5/16 7:30. We believe the sonde was caught up in the tube and eventually settled.
- WM Depth is odd from 7/1 9:00 to 18:30. After that point depth starts cycling normally We believe the sonde was caught up in the tube and eventually settled.