Padilla Bay (PDB) NERR Meteorological Metadata

January – December 2006

Latest Update: October 23, 2023

I. Data Set & Research Descriptors

1) Principal investigator & contact persons:

Contact Persons:

Dr. Douglas Bulthuis, Research Coordinator

phone: (360) 428-1089; email: bulthuis@padillabay.gov

Nicole Burnett, Environmental Specialist

phone: (360) 428-1046; email: nburnett@padillabay.gov

Address:

Padilla Bay NERR 10441 Bayview-Edison Road Mount Vernon, WA 98273-9668

Phone: (360) 428-1558

2) Entry verification

a) Data Input Procedures:

The instruments on the weather station sample meteorological conditions every 5 seconds and store it on a Campbell Scientific CR10X datalogger. From January 1st to July 31st data were logged to a file in three arrays of 15 minute (15), hourly (60) and daily (144) averages with maximums and minimums except for PAR and precipitation, which were totaled for each time period. The data were downloaded approximately once a month in the field to an Itronix Go Book III laptop computer. The laptop was connected to the SM4M storage module using Campbell Scientific software PC208W. On August 1st, 2006 the CR10X datalogger was replaced with the CR1000 datalogger and only the 15 minute (15) arrays were collected. The laptop was then connected directly to the datalogger using loggernet software from Campbell scientific. Files were exported from PC208W and loggernet in a comma-delimited format (.DAT) and opened in Microsoft Excel for pre-processing with the EQWin format macro that was developed by the CDMO to reformat the header columns, insert station codes, insert a date column (mm/dd/yyyy), correct the time column format and reformat the data to the appropriate number of decimal places. The pre-processed file was then QA/QC checked in Excel for outliers (values which fall outside the range that the instrument is designed to measure) and data gaps and then QA/QC checked in DeltaGraph for rapid changes in the data and for suspect data. The data were then copied into the EQWin weather .eqi file where the data were archived in a database and exported to the CDMO. Edited and raw files were archived on a PC hard drive, an external hard drive and on compact disk at Padilla Bay NERR. Nicole Burnett completed this process of entry verification for the 2006 data. Nicole Burnett and Doug Bulthuis completed final verification and this metadata documentation.

Any anomalous data were investigated and noted in the Anomalous Data/Suspect Data section. Any missing data were noted in the Missing Data section.

The most common errors/anomalies noted in 2006 were:

- 1. Small negative (< 1) PAR values that are within the one year stability range for the probe.
- 2. Relative Humidity > 100 but < 102.

All errors/anomalies were double checked with other data that could support such "anomalous" weather changes and noted in Section 11.

c) Error/Anomalous Data Criteria

Air Temp:

- -Sample not greater than 50 C or less than -40 C
- -15 minute averages not greater than the max for the day
- -15 minute averages not less than the *min* for the day

Relative Humidity:

- -Sample not greater than 100% or less than 0%
- -15 minute averages not greater than the *max* for the day
- -15 minute averages not less than the min for the day

Pressure:

- -Sample not greater than 1060 mb or less than 900 mb
- -15 minute averages not greater than the max for the day
- -15 minute averages not less than the *min* for the day

Wind Speed:

-Wind speed not greater than 30 m/s or less than 0.5 m/s for 12 consecutive hours

Wind Direction:

-Wind direction not greater than 360 degrees or less than 0 degrees

Precipitation:

- Total precipitation not greater than 5 mm in 15 min

Solar Radiation:

-Sample not greater than 5000 mmol/m² or less than -0.5 mmol/m²

Time:

-15 minute time interval recorded

For all data:

-No duplicate data

3) Research objectives:

The principal objective is to measure and record meteorological data at Padilla Bay for use in studies investigating correlations between meteorological data and water quality data, biological data, or other phenomenon in Padilla Bay and its watershed.

4) Research methods:

From January 1 through December 31, 2006 data were downloaded about once a month from the weather station. The sensors are visually inspected for debris or damage when the data is downloaded. Due to the location of the weather station in the middle of flat farm fields the sensors require very little cleaning. The most common problem occurs seasonally from air borne seeds partially blocking the rain gauge funnel. To mitigate this problem weeds near the site are cut before they set seed. While at the station downloading data a Kestrel 4000 Pocket Weather Tracker is used to make a general, comparative check of the Campbell station sensors. Suspicious precipitation data were checked against weather data from this area posted on Washington State University's website. All sensors are calibrated on a regular basis unless otherwise noted in sect 14) Other/Remarks and Notes. Specifically, the PAR and barometer sensors are sent to Campbell Scientific or the manufacturer every two years for calibration. The temperature (and relative humidity) and wind sensors are sent to Campbell Scientific or the manufacturer every year for calibration. The rain gauge is calibrated in house every year. On October 10th the third program version for the CR1000 datalogger was uploaded. This program omitted the maximum and minimum relative humilities and barometric pressures and the times at which they occurred and the minimum wind speed and the times at which they occurred.

5) Site location and character:

Padilla Bay (48° 30' N; 122° 30' W) is a shallow embayment in northern Puget Sound located in the greater Puget Sound-Georgia Basin estuary. It is an "orphaned" estuary in that the Skagit River, which formed the delta mud flats of Padilla Bay, no longer enters the bay directly. The tide flats are dominated by the eelgrass *Zostera marina*, which covers approximately 3,000 ha. *Zostera japonica*, a recent invader to the region, now covers about 800 ha of the bay. Tides are mixed semi-diurnal with a mean range of 1.5m. Salinity varies from about 15 to 31 PSU. Most of the land in the 9300 ha Padilla Bay watershed is agricultural, and is drained by four sloughs which empty into the bay. Some freshwater from the Skagit now enters Padilla Bay from the south through the Swinomish Channel which connects Padilla Bay to Skagit Bay. Other major freshwater flows into this area of the Puget Sound-Georgia Basin estuary are from the Fraser and Nooksack Rivers to the north. Padilla Bay is bordered on the east and south by flat, diked farmland; farther to the east are foothills of the Cascade Range. March Point, on the western edge of the reserve, is the site of two large oil refineries. To the north and west are the San Juan Islands of northern Puget Sound.

The weather station is located near the southeast corner (122° 28' 4.81" W; 48° 27' 50.58" N) of Padilla Bay on a 40 hectare demonstration farm that is owned by the Reserve. Flat fields that are farmed for seasonal crops surround the site. Access is off of Bayview-Edison road about 150 m down a gravel driveway.

The sensors are mounted on a 3 m tower that is secured to a concrete pad as specified by the manufacturer, Campbell Scientific. The relative humidity/temperature sensor is mounted 2 m high and the wind and PAR sensors are at the top of the tower 3 m above ground level. From January to August 1st 2006 the tipping-bucket rain gauge was bolted to a slab of wood that was attached to the top of a 55 gallon metal drum filled with water for stability. The top of the rain gauge was 1.2 m above ground level. After August 1st the rain gauge was mounted on a cement cylinder approximately 3 feet high. Surrounding the site is a six foot high chain link fence for security. The weather station is about 300 m from the diked edge of the bay and approximately 4 km SE of the Bayview Channel YSI deployment site and about 4 km south of the Padilla Bay Research Reserve laboratory. On November 11, 2005 telemetry equipment was installed to transmit data in real time through a GOES satellite.

6) Data collection period

January 1 at 00:00 to December 31 at 24:00

7) Distribution

According to the Ocean and Coastal Resource Management Data Dissemination Policy for the NERRS System-wide Monitoring Program, NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from the NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance/quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR weather data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Section 1 Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the

general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in text format.

8) Associated researchers and projects:

None

- II. Physical Structure Descriptors
- 9) Sensor specifications, operating range, accuracy, date of last calibration:

Parameter: Temperature and Relative Humidity

Units: Celsius

Sensor type: Platinum resistance temperature detector (PRT) Model #: HMP45C Temperature and Relative Humidity Probe

Operating Temperature: -40°C to +60°C

Range: -40°C to +60°C Accuracy: ± 0.2 °C @ 20°C Date of last calibration: 5/8/2006

Parameter: Barometric Sensor

Units: millibars (mb)

Sensor type: Vaisala Barocap © silicon capacitive pressure sensor

Model #: CS-105

Operating Range: Pressure: 600 to 1060 mb; Temperature: -40°C to +60°C;

Humidity: non-condensing

Accuracy: ± 0.5 mb @ 20° C; ± -2 mb @ 0° C to 40° C; ± -4 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to 45° C; ± -6 mb @ -20° C to -20° C

40°C to 60°C

Stability: ± 0.1 mb per year Date of last calibration: 8/15/06

Parameter: Wind speed

Units: meter per second (m/s)

Sensor type: 12 cm diameter cup wheel assembly, 40 mm diameter hemispherical cups

Model #: R.M. Young 03001-5 Wind Sentry

Range: 0-50 m/s (112 mph); gust survival 60 m/s (134 mph)

Accuracy: +/- 2%

Date of last calibration: 5/1/2006

Parameter: Wind direction

Units: degrees

Sensor type: balanced vane, 16 cm turning radius Model #: R.M. Young 03001-5 Wind Sentry

Range: 360° mechanical, 355° electrical (5° open)

Accuracy: +/- 5%

Date of last calibration: 5/1/2006

Parameter: LI-COR Quantum Sensor

Units: mmoles m-2 (total flux)

Sensor type: High stability silicon photovoltaic detector (blue enhanced)

Model #: LI190SB

Light spectrum waveband: 400 to 700 nm

Temperature dependence: 0.15% per °C maximum

Stability: <±2% change over 1 yr

Operating Temperature: -40°C to 65°C; Humidity: 0 to 100%

Sensitivity: typically 5 µA per 1000 µmoles s-1 m-2

Date of last calibration: 3/22/06

Parameter: Precipitation (unheated)

Units: millimeters (mm)

Sensor type: Tipping Bucket Rain Gauge

Model #: RG-2000-C Rainfall per tip: 0.01 inch Operating range: Not specified

Accuracy: +/- 1.0% at 14 inches per hour

Date of last calibration: 9/21/2006

Storage Module Model #: SM4M

Storage capacity: 2 million low-resolution data values

Program storage: stores up to 8 programs with a total capacity of 128 KB

Processor: Hitachi H8S

Operating system: 64 KB, flash memory based, user downloadable

Operating range: Temperature: -35° to +65°C

Baud rates: 9600, 76800

Memory type: user selectable for either ring style (default) or fill and drop.

Power requirements: 5 +/-0.3 VDC @ 100 mA

Campbell Scientific CR10X Wiring Panel has 128K of flash memory (EEPROM), in which it stores the operating system and its program (that it uses to run the weather station). Additionally, there is 128K of SRAM, which it uses to run the program and store its measurements and for final data storage. The CR1000 has two MB Flash EEPROM that is used to store the Operating System. Another 128 K Flash is used to store configuration settings. A minimum of 2 MB SRAM is (4 MB optional) is available for program storage (16K), operating system use, and data storage. Additional storage is available by using a compact flash card in the optional CFM100 Compact Flash Module.

10) Coded variable indicator and variable code definitions:

Sampling station: Sampling site code: Station code:

Padilla Farm PF pdbpfmet

11) Anomalous Data/Suspect Data:

Arrays:

During 2022 all pre-2007 weather data were revisited by the CDMO. Historically those datasets included 15 minute, hourly (60), and daily data arrays (144). As directed by the NERRS Data Management Committee, the CDMO removed the hourly and daily data arrays leaving only the 15 minute data to make the entire NERRS SWMP weather dataset consistent in its reporting. All references to the 60 and 144 arrays were left in the metadata document as they may still provide valuable information, but users should be aware that they are largely no longer relevant. The updated datasets were uploaded to the database and made available through the various data applications at www.nerrsdata.org/get/landing.cfm throughout the fall of 2022.

Negative PAR data have been observed during the night of some months: small negative values (-0.1 to -1.6) are within range of the sensor and are due to normal errors in the sensor and the CR10X and CR1000 Dataloggers. The maximum signal noise error for the PAR sensor is +/- 2.214 mmoles/m2 over a 15 minute interval. These data have been retained.

Relative humidity values >100 but \leq 102 % are common during the winter months. These are within the accuracy range of this sensor. These data have been retained.

12) Deleted data:

Arrays:

During 2022 all pre-2007 weather data were revisited by the CDMO. Historically those datasets included 15 minute, hourly (60), and daily data arrays (144). As directed by the NERRS Data Management Committee, the CDMO removed the hourly and daily data arrays leaving only the 15 minute data to make the entire NERRS SWMP weather dataset consistent in its reporting. All references to the 60 and 144 arrays were left in the metadata document as they may still provide valuable information, but users should be aware that they are largely no longer relevant. The updated datasets were uploaded to the database and made available through the various data applications at www.nerrsdata.org/get/landing.cfm throughout the fall of 2022.

On June 5, 2006 downloading of data was attempted by the normal methods, however, it took several attempts to retrieve the data. On June 7, 2006 the data were downloaded. When the data for June were QA/QC there were quadruple sets of data for the 15 minute intervals of 14:30, 14:45, and 15:00 and also for the hourly interval of 15:00 on June 15th. The three extra sets of data at these times were deleted.

On August 1, 2006 a new program was downloaded and sensors were changed when the CR1000 datalogger was installed. All data were deleted at 10:45.

On August 1, 2006 the barometric pressure readings were 600 mb because of an improperly installed barometer. Barometric pressure data were deleted from 10:45 to 13:00.

On August 2, 2006 the station was powered down to again attempt installation of the barometer. Data for all sensors were deleted from 9:30 to 9:45.

On August 25, 2006 the station was powered down to replace the PAR sensor and to upload the new program. Data for all sensors were deleted from 13:15 to 14:00.

On August 28, 2006 the station was powered down to replace the barometer. Data for all sensors were deleted at 10:15 and 10:30.

On August 1, 2, and 28 and September 14, 15, and 22 and October 11 and 19 two 15 minute arrays at 12:00 pm were recorded. In all cases the second 12:00 pm record was deleted.

The new rain gauge was installed on 8/1/06 and it was determined that it was not working properly. Another rain gauge was installed on 9/22/06. The precipitation data were deleted from 8/1/06 at 10:45 to 13:00 and from 8/1/06 at 17:00 to 9/22/06 at 9:00.

On September 22, 2006 the station was powered down. Data were deleted at 8:45.

On October 10th a new program was uploaded. Data were deleted at15:00.

During November the funnel of the rain gauge blew off in a storm and the rain gauge was not collecting rain properly. The precipitation data were deleted from 00:15 on 11/4/06 to 12:00 on 11/6/06.

After the installation of the CR1000 datalogger a NAN (not a number) value was recorded for the wind speed and minimum wind speed at 12:15 or 10:00 from August 3rd to October 18th. These wind speed data were deleted:

8/3/2006	12:15
8/4/2006	12:15
8/5/2006	12:15
8/6/2006	12:15
8/7/2006	12:15
8/8/2006	12:15
8/9/2006	12:15
8/10/2006	12:15
8/11/2006	12:15
8/12/2006	12:15
8/13/2006	12:15

8/14/2006	12:15
8/15/2006	12:15
8/16/2006	12:15
8/17/2006	12:15
8/18/2006	12:15
8/19/2006	12:15
8/20/2006	12:15
8/21/2006	12:15
8/22/2006	12:15
8/23/2006	12:15
8/24/2006	12:15
8/25/2006	12:15
9/14/2006	10:00
9/15/2006	
	10:00
9/16/2006	12:15
9/17/2006	12:15
9/18/2006	12:15
9/19/2006	12:15
9/20/2006	12:15
9/21/2006	12:15
9/23/2006	12:15
9/24/2006	12:15
9/25/2006	12:15
9/26/2006	12:15
9/27/2006	12:15
9/28/2006	12:15
9/29/2006	12:15
9/30/2006	12:15
10/1/2006	12:15
10/2/2006	12:15
10/3/2006	12:15
10/4/2006	12:15
10/5/2006	12:15
10/6/2006	12:15
10/7/2006	12:15
10/8/2006	12:15
10/9/2006	12:15
10/10/2006	12:15
10/12/2006	12:15
10/13/2006	12:15
10/14/2006	12:15
10/15/2006	12:15
10/16/2006	12:15
10/17/2006	12:15
10/18/2006	12:15

This minimum wind speed datum was deleted

9/14/2006 10:00

13) Missing data:

Arrays:

During 2022 all pre-2007 weather data were revisited by the CDMO. Historically those datasets included 15 minute, hourly (60), and daily data arrays (144). As directed by the NERRS Data Management Committee, the CDMO removed the hourly and daily data arrays leaving only the 15 minute data to make the entire NERRS SWMP weather dataset consistent in its reporting. All references to the 60 and 144 arrays were left in the metadata document as they may still provide valuable information, but users should be aware that they are largely no longer relevant. The updated datasets were uploaded to the database and made available through the various data applications at www.nerrsdata.org/get/landing.cfm throughout the fall of 2022.

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. For more details on deleted data, see the Deleted Data Section (12). If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

On August 1, 2006 a new program was downloaded and sensors were changed and the CR1000 datalogger was installed. Data are missing because of the power down from 8:45-10:30 and 13:15-16:45.

On August 25, 2006 the station was powered down to replace the PAR sensor and upload the new program. Data were missing 13:15-13:45.

On August 28, 2006 the station was powered down to replace the barometer. Data were missing at 10:15.

On September 14, 2006 the 9:45 record was missing for an unknown reason.

On September 22, 2006 the station was powered down. The 8:30 record was missing.

On October 10th a new program was uploaded. Data were missing from 13:30-14:45.

On October 18th the new program was fixed and uploaded again. Data were missing at 13:30.

14) Other Remarks/notes

On 10/23/2023 this dataset was updated to include embedded QAQC flags for anomalous/suspect data. System-wide monitoring data beginning in 2007 were processed to allow for QAQC flags and codes to be embedded in the data files rather than detailed in the metadata alone (as in the anomalous/suspect, deleted, and missing data sections above). Prior to 2007, rejected data were deleted from the dataset so they are

unavailable to be used at all, but suspect data were only noted in the metadata document. Suspect data flags <1> were embedded retroactively in order to allow suspect data to be easily identified and filtered from the dataset if desired for analysis and reporting purposes. No other flags or codes were embedded in the dataset and users should still refer to the detailed explanations above for more information.

Arrays:

During 2022 all pre-2007 weather data were revisited by the CDMO. Historically those datasets included 15 minute, hourly (60), and daily data arrays (144). As directed by the NERRS Data Management Committee, the CDMO removed the hourly and daily data arrays leaving only the 15 minute data to make the entire NERRS SWMP weather dataset consistent in its reporting. All references to the 60 and 144 arrays were left in the metadata document as they may still provide valuable information, but users should be aware that they are largely no longer relevant. The updated datasets were uploaded to the database and made available through the various data applications at www.nerrsdata.org/get/landing.cfm throughout the fall of 2022.

Precipitation:

During the initial years of NERRS SWMP weather data collection the CR10X programming was inconsistent in how precipitation values were recorded. For most reserves, zeros were not recorded when rainfall had not occurred between 2001-2003, instead no rainfall was represented by a blank cell. The CDMO verified which datasets were impacted by this issue for the 2001-2006 datasets and inserted zeros when the metadata indicated that no precipitation occurred and data were not missing for other reasons. In some cases, zero values for precipitation data were evaluated and removed where the metadata confirmed that no rainfall should have been in the dataset. The pre-2007 data did not go through a thorough QAQC process again at that time (in addition to previous QAQC); however, if discrepancies were noticed between what was documented in the metadata and what was in the dataset, additional updates may have been made. The updated datasets were uploaded to the database and made available through the various data applications at www.nerrsdata.org/get/landing.cfm throughout early 2023.

Campbell Scientific data telemetry equipment is used at this station to transmit to the NOAA GOES satellite, NESDIS ID #3B005706 and NWS Location ID pbfw1. The transmissions are scheduled hourly and contain four (4) datasets reflecting the fifteen min data sampling interval. The telemetry is "Provisional" data and not the "Authentic" Dataset used for long term monitoring and study. This data can be viewed by going to http://cdmo.baruch.sc.edu.

The Wind Sentry set and Quantum Sensor should have been replaced in 2004, this did not happen until 8/1/2006 which resulted in these sensors being overdue for calibration for part of the year. The sensors were last calibrated in November of 2000. Comparative checks of the wind speed with the handheld Kestral 4000 show good correlation with the Wind Sentry.

The rain gauge was due for calibration around November 2004, this did not happen which resulted in this sensor being overdue for calibration. Comparative checks to other local precipitation data show a good correlation with the rain gauge. The newly calibrated rain gauge was installed on 8/1/06 but it was not working properly. The next rain gauge was installed on 9/22/06.

The PAR sensor was due for calibration around November 2002, this did not happen which resulted in this sensor being overdue for calibration. The data for PAR appear to be correct. The newly calibrated sensor was installed on 8/1/06.

The barometer was due for calibration around November 2005, this did not happen which resulted in this sensor being overdue for calibration. The barometric pressure data appear to be correct. The newly calibrated sensor was installed on 8/1/06.