Padilla Bay (PDB) NERR Meteorological Metadata

January through December 2011 Latest Update: September 15, 2013

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons -

Dr. Douglas Bulthuis, Research Coordinator phone: (360) 428-1089; email: bulthuis@padillabay.gov

Heath Bohlmann, Environmental Specialist phone: (360) 428-1046; email: hbohlmann@padillabay.gov

Address: Padilla Bay NERR 10441 Bayview-Edison Road Mount Vernon, WA 98273-9668 Phone: (360) 428-1558

2) Entry verification –

Data are uploaded from the CR1000 data logger to a Personal Computer (IBM compatible). Files are exported from LoggerNet in a comma-delimited format and uploaded to the CDMO where they undergo automated primary QAQC and become part of the CDMO's online provisional database. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to Padilla Bay NERR where it is opened in Microsoft Excel and processed using the CDMO's NERROAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, append files, and export the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. Files are compiled quarterly and submitted after the secondary QAQC is completed. A final yearly file is compiled from the quarterly files, run once again through the QAQC process and submitted with metadata to CDMO. For more information on QAQC flags and QAQC codes, see Sections 11 and 12. Heath Bohlmann completed this process for entry verification and final data verification and compiled this metadata for the 2010 data. Doug Bulthuis reviewed final data verification and metadata.

3) Research objectives -

The principal objective is to measure and record meteorological data at Padilla Bay for use in studies investigating correlations between meteorological data and water quality data, biological data, or other phenomenon in Padilla Bay and its watershed.

4) Research methods -

The weather parameters, air temperature, relative humidity, barometric pressure, wind speed and direction, photosynthetically active radiation, and precipitation were measured with a Campbell Scientific weather station at the Padilla Demonstration Farm near the southeast shore of Padilla Bay. Fifteen minute data were stored in a data logger and downloaded monthly. From January 1 through December 31, 2011 data were downloaded about once a month from the weather station. The sensors were visually inspected for debris or damage when the data were downloaded. Due to the location of the weather station in the middle of flat farm fields, the sensors require very little cleaning. The most common problem occurs seasonally from air borne seeds partially blocking the rain gauge funnel. To mitigate this problem weeds near the site were cut before they set seed. While at the station downloading data, a Kestrel 4000 Pocket Weather Tracker is used to make a general, comparative check of the Campbell station sensors. Suspicious data are also checked against other local weather data posted on Washington State University's website (http://weather.wsu.edu)*. All sensors were calibrated on a regular basis unless otherwise noted in section 14.

Campbell Scientific data telemetry equipment was installed at the Padilla Demonstration Farm station on 11/11/05 and transmits data to the NOAA GOES satellite, NESDIS ID #3B005706. (Where 3B335706 is the GOES ID for that particular station.) The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at http://cdmo.baruch.sc.edu.

The 15 minute Data are collected in the following formats for the CR1000:

Averages from 5-second data:

Air Temperature (°C), Relative Humidity (%), Barometric Pressure (mb), Wind Speed (m/s), Wind Direction (degrees), Battery Voltage (volts)

Maximum, Minimum, and their times from 5-second data:

Air Temperature (°C) (these data are not included in the dataset, but are available from PDB NERR)

Maximum and their times from 5-second data

Wind Speed, (m/s)

Wind Direction Standard Deviation (degrees) from 5-second data Totals:

Precipitation 15 min. (mm), PAR 15 min. (millimoles/m²), and Cumulative Daily Precipitation (mm)

5) Site location and character -

Padilla Bay (48° 30' N; 122° 30' W) is a shallow embayment in northern Puget Sound located in the greater Puget Sound-Georgia Basin estuary. It is an "orphaned" estuary in that the Skagit River, which formed the delta mud flats of Padilla Bay, no longer enters the bay directly. The tide flats are dominated by the eelgrass *Zostera marina*, which covers approximately 3,000 ha. *Zostera japonica*, a recent invader to the region, now covers about 800 ha of the bay. Tides are mixed semi-diurnal with a mean range of 1.5 m. Salinity varies from about 15 to 31 PSU. Most of the land in the 9300 ha Padilla Bay watershed is agricultural, and is drained by four sloughs which empty into the bay. Some freshwater from the Skagit now enters Padilla Bay from the south through the Swinomish Channel which connects

Padilla Bay to Skagit Bay. Other major freshwater flows into this area of the Puget Sound-Georgia Basin estuary are from the Fraser and Nooksack Rivers to the north. Padilla Bay is bordered on the east and south by flat, diked farmland; farther to the east are foothills of the Cascade Range. March Point, on the western edge of the reserve, is the site of two large oil refineries. To the north and west are the San Juan Islands of northern Puget Sound.

The weather station is located near the southeast corner (122° 28' 09.49" W; 48° 27' 49.85" N) of Padilla Bay on a 40 hectare demonstration farm that is owned by the Reserve. Flat fields that are farmed for seasonal crops surround the site. Access is off of Bayview-Edison Road about 150 m down a gravel driveway. Base elevation of the weather station in orthometric height is 2.2m above mean sea level.

The sensors are mounted on a 3 m tower that is secured to a concrete pad as specified by the manufacturer, Campbell Scientific. The relative humidity/temperature sensor is mounted 2 m high and the wind and PAR sensors are at the top of the tower 3 m above ground level. The barometric pressure sensor is mounted 1 m above the ground (inside the CR1000 enclosure). The rain gauge is mounted on a cement cylinder approximately 3 feet high. Surrounding the site is a six foot high chain link fence for security. The weather station is about 300 m from the diked edge of the bay and approximately 4 km SE of the Bayview Channel YSI deployment site and about 4 km south of the Padilla Bay NERR Laboratory.

6) Data collection period -

January 1 at 00:00 to December 31 at 23:45, 2011. Data have been collected at the Padilla Farm weather station since January 1, 2001.

7) Distribution -

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR weather data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the

CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in comma separated format.

8) Associated researchers and projects

In coordination with the SWMP weather data collected at Padilla Bay, water quality and nutrient data are also collected. The water quality part of SWMP consists of placing YSI 6600 datasondes at four sites in Padilla Bay. The sondes collect such parameters as water temperature, salinity, dissolved oxygen, depth, pH, and turbidity. The nutrient component of SWMP consists of monthly grab samples taken at each of the same four sites and monthly diel sampling taken at one of the sites (Bayview Channel Site). The nutrients analyzed include, but are not limited to, nitrate, nitrite, ammonium, silicate, orthophosphate, and chlorophyll a.

Other projects currently conducted at Padilla Bay include a zooplankton monitoring project with monthly sampling occurring at the three water quality/ nutrient sampling sites within the bay. In August 2009 Padilla Bay started long term monitoring of the rocky intertidal habitat in partnership with the Multi-Agency Rocky Intertidal Network (MARINe). See the MARINe website for further information on this monitoring project: http://www.marine.gov/index.htm. In 2011, Padilla Bay started a long term monitoring project of vegetative characteristics of two species of eelgrass: Zostera marina and Z. japonica on transects extending from the shoreline to the lower limit of distribution of eelgrasses. Dr. John Rybczyk, Western Washington University, established and maintains eighteen Surface Elevation Tables (SETs) throughout Padilla Bay. Padilla Bay sponsors graduate research in the bay through the Padilla Bay Research Assistantships in Estuarine Science and Coastal Zone Management. NOAA/OCRM/ERD sponsors graduate research in the NERRS, including Padilla Bay, through the Graduate Research Fellowship program. See the Padilla Bay NERR web site, http://padillabay.gov/researchoverview.asp, or contact the Research Coordinator (see I. above) for further information about these projects and other monitoring or research in Padilla Bay.

II. Physical Structure Descriptors

9) Sensor specifications

Parameter: Temperature

Units: Celsius

Sensor type: Platinum resistance temperature detector (PRT) Model #: HMP45C Temperature and Relative Humidity Probe

Instrument #: X1130021

Operating Temperature: -40°C to +60°C

Range: -40°C to +60°C Accuracy: ± 0.2 °C @ 20°C Calibration Frequency: 1 year

Sensor Serial #	calibration date	deployment dates
X1130020	12/28/2009	5/7/2010-5/4/2011
X1130021	4/6/2011	5/4/2011-5/30/2012

Parameter: Relative Humidity

Units: Percent

Sensor type: Vaisala HUMICAP© 180 capacitive relative humidity sensor

Model #: HMP45C Temperature and Relative Humidity Probe

Range: 0-100% non-condensing

Accuracy at 20°C: +/- 2% RH (0-90%) and +/- 3% (90-100%) Temperature dependence of RH measurement: +/- 0.05% RH/°C

Calibration Frequency: 1 year

Sensor Serial #	calibration date	deployment dates
X1130020	12/28/2009	5/7/2010-5/4/2011
X1130021	4/6/2011	5/4/2011-5/30/2012

Parameter: Barometric Pressure

Units: millibars (mb)

Sensor type: Vaisala Barocap © silicon capacitive pressure sensor

Model #: CS-105

Operating Range: Pressure: 600 to 1060 mb; Temperature: -40°C to +60°C;

Humidity: non-condensing

Accuracy: ± 0.5 mb @ 20°C; ± -2 mb @ 0°C to ± 40 °C; ± -4 mb @ ± 20 °C to ± 45 °C; ± -6 mb

@ -40°C to 60°C

Stability: ± 0.1 mb per year Calibration Frequency: 2 years

Sensor Serial #	calibration date	deployment dates
		1 7
R1630013	3/15/2010	6/18/2010-5/30/2012

Parameter: Wind speed

Units: meter per second (m/s)

Sensor type: 12 cm diameter cup wheel assembly, 40 mm diameter hemispherical cups

Model #: R.M. Young 03001-5 Wind Sentry

Range: 0-50 m/s (112 mph); gust survival 60 m/s (134 mph)

Accuracy: +/- 2%

Calibration Frequency: 1 year

Sensor Serial #	calibration date	deployment dates
A	12/15/2009	5/7/2010-5/4/2011
В	4/15/2011	5/4/2011-5/30/2012

Parameter: Wind direction

Units: degrees

Sensor type: balanced vane, 16 cm turning radius

Model #: R.M. Young 03001-5 Wind Sentry Range: 360° mechanical, 355° electrical (5° open)

Accuracy: +/- 5%

Calibration Frequency: 1 year

Sensor Serial #	calibration date	deployment dates
A	12/15/2009	5/7/2010-5/4/2011
В	4/15/2011	5/4/2011-5/30/2012

Parameter: Photosynthetically Active Radiation (PAR)

Units: mmoles m-2 (total flux)

Sensor type: LI-COR Quantum Sensor. High stability silicon photovoltaic detector (blue

enhanced)

Model #: Quantum LI190SB

Light spectrum waveband: 400 to 700 nm

Temperature dependence: 0.15% per °C maximum

Stability: <±2% change over 1 yr

Operating Temperature: -40°C to 65°C; Humidity: 0 to 100%

Sensitivity: typically 5 μA per 1000 μmoles s-1 m-2

Calibration Frequency: 2 years

Sensor Serial #	calibration date	deployment dates	PAR Multiplier
Q35859	3/11/2010	6/18/2010-5/30/2012	1.468

Parameter: Precipitation Units: millimeters (mm)

Sensor type: Tipping Bucket Rain Gauge

Model #: RG-2000-C Rainfall per tip: 0.01 inch Operating range: Not specified

Accuracy: +/- 1.0% at 14 inches per hour

Calibration Frequency: 1 year

Sensor Serial #	calibration date	deployment dates
PDBGR3	1/21/2010	1/21/2010-3/7/2011
PDBRG3	3/7/2011	3/7/2011-3/27/2012

CR1000 Measurement and Control System

Date Installed: Aug/01/2006

The CR1000 has 2 MB of Flash EEPROM that is used to store the Operating System. Another 128 K Flash is used to store configuration settings. A minimum of 2 MB SRAM is (4 MB optional upgrade) available for program storage (16K), operating system use, and data storage. Additional storage is available by using a compact flash card in the optional CFM100 Compact Flash Module.

10) Coded variable definitions - List the sampling station, sampling site code, and station code used in the data.

Sampling station: Sampling site code: Station code:

Padilla Farm PF pdbpfmet

11) QAQC flag definitions -

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is above or below sensor range, or missing. All remaining data are then flagged 0, as passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP supported parameter
- 0 Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Open reserved for later flag
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions -

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the CR1000, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F_Record column.

General Errors

GIM Instrument Malfunction

GIT Instrument Recording Error, Recovered Telemetry Data GMC No Instrument Deployed due to Maintenance/Calibration

GMT Instrument Maintenance

GPD	Power Down
GPF	Power Failure / Low Battery
GPR	Program Reload
GQR	Data Rejected Due to QA/QC Checks
GSM	See Metadata
Sensor Errors	
SDG	Suspect due to sensor diagnostics
SIC	Incorrect Calibration Constant, Multiplier or Offset
SIW	Incorrect Wiring
SMT	Sensor Maintenance
SNV	Negative Value
SOC	Out of Calibration
SQR	Data rejected due to QAQC checks
SSN	Not a Number / Unknown Value
SSM	Sensor Malfunction

SSR Comments

CDD

CAF Acceptable Calibration/Accuracy Error of Sensor

CDF Data Appear to Fit Conditions

Sensor Removed

Snow melt from previous snowfall event CML

Significant Rain Event CRE*

CSM* See Metadata **CCU** Cause Unknown

CVT*Possible Vandalism/Tampering CWE* Significant weather event

13) Other remarks/notes –

General Data Comments

Data are missing due to equipment or associated specific sensors not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

Data recorded for all parameters (with the exception of cumulative precipitation) at the midnight timestamp (00:00) are the 15 minute averages and totals for the 23:45-23:59 time period of the previous day. Cumulative precipitation data at the midnight timestamp (00:00) are the sum of raw (unrounded) precipitation data from 00:00 to 23:59 of the previous day. Summing each individual 15-minute total precipitation value from the same period will result in small differences from cumulative precipitation due to rounding. It is especially important to note how data at the midnight timestamp are recorded when using January 1st and December 31st data.

Rh Data

Relative Humidity data greater than 100 are within range of the sensor accuracy of +/-3%.

RH Data from the following dates rejected due to values recorded above the acceptable sensor range.

```
10/27/2011 4:00through 10/27/2011 8:00
11/01/2011 06:15 through 11/01/2011 07:30
12/05/2011 4:00 through 12/05/2011 06:15
12/06/2011 03:30
12/06/2011 04:00 through 12/06/2011 04:15
12/06/2011 5:15 through 12/06/2011 08:15
12/10/2011 00:45
12/10/2011 3:00 through 12/10/2011 3:15
```

Precipitation Data

Cumulative precipitation data are recorded from 00:00 to 23:59 with the daily total recorded at the midnight mark (00:00). The midnight CumPrcp value is actually the total from the previous day.

PAR Data

Small negative PAR values are within range of the sensor and are due to normal errors in the sensor and the CR1000 Datalogger. The Maximum signal noise error for the Licor sensor is +/- 2.214 mmoles/m2 over a 15 minute interval.

Elevated nighttime PAR values were recorded during some nights over of the year. Nighttime PAR values <2.214 but >0 are marked as suspect, and nighttime values >2.214 were rejected. Data rejection times at dusk and dawn were based on having a < 2.0 change in the PAR value in conjunction with a preceding fall or subsequent rise in values. Daytime PAR values following rejected elevated nighttime datasets were also marked as suspect. The cause for the elevated values is suspected to be moisture intrusion into the sensor body.

All PAR data for 2011, including <0>, are coded with CSM.

* Meteorological Data References:

Meteorological data used for comparison can be found at the AgWeatherNet network. To access raw data for the AgWeaterNet network, go to the AgWeatherNet web site URL as follows: www.weather.wsu.edu.

Station: **WSU Mt Vernon** Lat: 48.43849, Lng: -122.38566, Elevation: 7.01m, Distance from Padilla Bay Farm MET station: 6.5 km.

Station: **Sakuma** Lat: 48.49735, Lng: -122.37847, Elevation: 8.53m, Distance from Padilla Bay Farm MET station: 8 km.

Station: **Fir Island** Lat: 48.35654, Lng: -122.42188, Elevation: 0m, Distance from Padilla Bay Farm MET station: 16 km.