Padilla Bay (PDB) NERR Nutrient Metadata January – December 2006 Latest Update: July 14, 2025

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons

a) Reserve Contact

Dr. Douglas Bulthuis, Research Coordinator and Principal Investigator Padilla Bay National Estuarine Research Reserve 10441 Bayview-Edison Rd.

Mt. Vernon, WA 98273-9668

Phone: 360-428-1089

E-mail: bulthuis@padillabay.gov

Nicole Burnett, Environmental Specialist Padilla Bay National Estuarine Research Reserve 10441 Bayview-Edison Rd. Mt. Vernon, WA 98273-9668

Phone: 360-428-1046

E-mail: nburnett@padillabay.gov

b) Laboratory Contact

Kathy Krogslund, Lab Manager, Marine Chemistry School of Oceanography Rm. G Marine Sciences Building University of Washington Seattle, WA 98195

Phone: 206-543-9235

E-mail: kkrog@u.washington.edu

c) Other Contacts

Paula Margerum, Environmental Specialist Padilla Bay National estuarine Research Reserve 10441 Bayview-Edison Rd. Mt. Vernon, WA 98273-9668

Phone: 360-428-1097

Email: margerum@padillabay.gov

2) Research objectives

a) Monthly Grab

Two of the objectives of the semi-monthly sampling series are to determine if there are onshore to offshore gradients in nutrient concentrations, and to determine whether these change seasonally. The Joe Leary Slough site is located at the mouth of the largest freshwater drainage to Padilla Bay. Bayview Channel and Ploeg Channel are located about half way between the shore of Padilla Bay and the offshore channels and straits that are the source of water for Padilla Bay. Bayview Channel is in the southern half and Ploeg Channel is in the northern half of the bay. A fourth site, Gong, is in the offshore channels to the west of Padilla Bay. Data from a preliminary study have indicated an offshore to onshore dissolved inorganic nitrogen gradient during the summer and an onshore to offshore gradient during the winter.

b) Diel Sampling Program

Two of the objectives of the 26 hour sampling each month are to determine whether nutrient concentrations are higher in the water flowing off the eelgrass-covered tidal flats or onto the flats, and to determine whether this pattern changes seasonally. The Bayview Channel site is in a small channel that drains inter-tidal flats that are mainly covered with dense eelgrass, *Zostera marina* and *Z. japonica*. The small channel is flooded by water coming up Bayview Channel, the largest tidal channel in Padilla Bay.

3) Research methods

At the Padilla Bay laboratory, samples were immediately placed in a refrigerator at 5 °C until processing. Within 4-6 hours of return to the Padilla Bay laboratory, samples were filtered and placed in sample bottles provided by the Chemical Oceanography Laboratory of the University of Washington (U of WA). Immediately after filtering, sample bottles were placed in a freezer and kept frozen at -20 °C.

a) Monthly Grab Sampling Program

Semi-monthly grab samples were taken at the four principal PBNERR datasonde stations within Padilla Bay (Bayview Channel, Ploeg Channel, Gong Surface and Joe Leary Slough). No distinction was made between neap and spring tide conditions. Replicate (N=2) samples were taken at the datasonde sensor depth (.5 meters from the bottom for Bayview, Ploeg and Joe Leary and .5 meters from the surface for Gong Surface). Bayview and Ploeg Channels and Gong Surface are only accessible by boat; therefore, sampling sometimes occurred before or after inclement weather that may have included significant rainfall, and at times other than low tide. Samples were obtained using a Kemmerer water sampler lowered to the sensor depth. Two samples were taken, one immediately after the other and then transferred into bottles. At the time of sample collection, water temperature, salinity and dissolved oxygen were measured with a YSI Model 85 meter. All samples were transported in amber, wide-mouth, nalgene sample bottles that were previously acid washed (10% HCI), rinsed (3x) with distilled-deionized water. Bottles were rinsed (3x) with ambient water prior to collection of the sample. Samples were immediately placed in a cooler and returned to the laboratory, usually within 4 hours of collection.

Once in the Padilla Bay laboratory, samples were shaken and filtered for orthophosphate (PO4), ammonium (NH4), nitrite (NO2) and nitrate (NO3), chlorophyll a and phaeophytin. Filtering for the dissolved inorganic nutrient parameters (P04, NH4, NO2, NO3, and SiO4) was done by taking 45ml of sample water and filtering it into previously acid-washed bottles through a 0.45µm membrane filter using a syringe. The samples are then immediately frozen at –20°C. Chlorophyll a processing included filtering 50ml of sample water through a vacuum manifold with Whatman

GF/F 25mm filters. The filters were then folded in half and put into plastic vials and immediately frozen at -20° C.

Within 1-4 days, the frozen samples were sent via overnight express in a cooler with ice to the Chemical Oceanography Laboratory at the University of Washington where they were stored in a freezer until analysis.

b) Diel Sampling Program

Diel sampling occurred once a month at the Bayview Channel site using a Sigma automated sampler. The sampler was programmed, when possible, to begin and end at low tide. The Sigma was deployed using a floating platform that is anchored in a channel beside the Bayview Channel datasonde site. One sample was taken every 68 minutes for a total of 24 samples over a 26 hour period. Because the sampler was deployed on a floating platform, samples were taken at .5 meter from the surface. All samples went into plastic bottles previously acid-washed (10 % HCI), rinsed (3X) with distilled-deionized water and dried. Ice was placed in the sampler to keep samples cool during summer months. At the end of the 26 hour sampling cycle, samples were returned to the laboratory for filtering and processing on the same day. These samples are filtered for dissolved inorganic nutrients and chlorophyll. The methods for filtering these parameters are described above in the Monthly Grab Sampling Program. Within 1-4 days, the frozen samples were sent via overnight express in a cooler with ice to the Chemical Oceanography Laboratory at the University of Washington where they were stored in a freezer until analysis.

4) Site location and character

General: Padilla Bay (48° 30' N; 122° 30' W) is a shallow embayment in northern Puget Sound. The tide flats are dominated by the eelgrass *Zostera marina*, which covers approximately 3,000 ha. *Zostera japonica*, a recent invader to the region, now covers about 350 ha of the bay. Tides are mixed semi-diurnal with a mean range of 1.55 m. Salinity varies from about 20 to 32 PSU. Padilla Bay is an "orphaned" estuary in that the Skagit River no longer empties directly into it. Most of the land in the 9300 ha Padilla Bay watershed is agricultural, and is drained by four sloughs which empty into the bay. The salinity in Padilla Bay reflects both the sloughs that flow into the bay and the greater Puget Sound-Georgia Basin estuary in which Padilla Bay is located. Major freshwater flows into this area of the Puget Sound-Georgia Basin estuary come from the Fraser and Nooksack Rivers to the north and from the Skagit River to the south.

a) Joe Leary Slough Site: $(48^{\circ} 31' 05.3" \ N; 122^{\circ} 28' 22.8" \ W)$ Joe Leary Slough drains land that is predominantly annual crop agriculture and pasture land with some low-density housing. The slough is characterized by high fecal and nutrient inputs, high turbidity, and low dissolved oxygen concentrations. During the summer, there is low flow and the depth ranges from 0.5-1.5 m. During winter flooding, the slough can reach a depth of 4 m. There is a dam at the mouth of the slough with twelve 4 ft. diameter outfall pipes that have one-way hinged tide gates. Upstream water flows out of Joe Leary Slough when water height in Padilla Bay is lower than water height in Joe Leary Slough (i.e. ebbing tide and low water). Some saline water from Padilla Bay seeps through the tide gates during high water. The bottom of the slough is composed of very soft sediment, which is periodically dredged, most recently October 2000. The deployment site is on the freshwater side of the tide gates. The latitude/longitude were measured with a Trimble GeoExplorer II and differentially corrected with post processing providing a manufacturer's stated accuracy of ± 5 m.

- b) Bayview Channel Site: (48° 29' 46.6" N; 122° 30' 01.8" W) Bayview Channel, a major Padilla Bay tributary/distributary, floods and drains intertidal flats including eelgrass beds, mats of macroalgae, and flats without macro-vegetation. The YSI datasonde is located in a tributary channel to Bayview Channel. The tributary drains predominately eelgrass (*Zostera marina* and *Z. japonica*) covered intertidal flats. Depth range at this site is about 2 4 meters from LLW to HHW. Bottom sediments beneath the deployment site are fine silt and clay overlying sand. Pollutants entering the bay include general non-point source, agricultural non-point source, and fecal coliform bacteria from agriculture, failing septic tanks and wildlife. The latitude/longitude were measured with a Trimble GeoExplorer II and differentially corrected with post processing providing a manufacturer's stated accuracy of ± 5 m.
- c) Ploeg Channel Site: (48° 33' 23.5" N; 122° 31' 46.7" W) Ploeg Channel floods and drains intertidal flats at the north end of Padilla Bay that are comprised of mud flats and eelgrass beds (*Zostera marina* and *Z. japonica*) in approximately equal amounts. Depth range at this site is about 2 4 meters from LLW to HHW. Bottom sediments beneath the deployment site are fine to medium sands. The Ploeg Channel site was added to the sites being monitored as part of the Padilla Bay NERR System-Wide Monitoring Program in July 2001 as part of the SWMP expansion. The Ploeg Channel site was selected to extend the geographic coverage and to indicate if there is a north to south gradient in water quality in Padilla Bay. A fourth site was added in 2003 in the deep channel west of Ploeg Channel. The Ploeg Channel site is now one site along a gradient from fresh water sources to marine sources of water to Padilla Bay. Pollutants entering the bay include general non-point source, agricultural non-point source, and fecal coliform bacteria from agriculture, failing septic tanks and wildlife. The latitude/longitude were measured with a Trimble GeoExplorer II and differentially corrected with post processing providing a manufacturer's stated accuracy of ± 5 m.
- d) Gong Surface site: (48° 33' 30" N; 122° 34' 21" W) The Gong site is located at –18 m on a gradually sloping bottom (from –1 m to –75 m over 2 km) in the strait between Samish and Guemes Islands. Water in the strait flows north and south with tidal currents, the net water movement is apparently south toward the inlet to Guemes Channel. Water from the strait flows onto the intertidal flats in the northern part of Padilla Bay with each tidal cycle. Bottom sediments are mud. Depth at this site is 18-20 m. The Gong site is at the "marine" end of a gradient of sites extending from freshwater in Joe Leary Slough (JL), Bayview Channel (BY) and Ploeg Channel (BP) in mid Padilla Bay to Gong located in the straits west of Padilla Bay that are a source of marine water to the bay. The only apparent pollution sources are the general sources of pollution to the Strait of Georgia and Northwest Straits. The latitude/longitude were measured with a Trimble GeoExplorer II and differentially corrected with post processing providing a manufacturer's

stated accuracy of \pm 5 m.

5) Code Variable Definitions:

Sampling Site Codes:

pdbbpnut = Padilla Bay Research Reserve nutrient and chlorophyll data for Ploeg Channel site pdbbynut = Padilla Bay Research Reserve nutrient and chlorophyll data for Bayview Channel site pdbgsnut = Padilla Bay Research Reserve nutrient and chlorophyll data for Gong Surface site pdbjlnut = Padilla Bay Research Reserve nutrient and chlorophyll data for Joe Leary Slough site

Monitoring program codes:

1 = grab sample

2 = diel sample

Replicate codes for grab samples: 1 = first sample

2 = second sample

Replicate codes for diel samples: 1 = first sample

6) Data collection period

Diel Data Collection Period – January 2006 thru December 2006

Site	Start Date	Start time	End Date	End Time
pdbbynut	01/18/2006	00:30	01/19/2006	01:31
pdbbynut	02/22/2006	18:05	02/23/2006	20:09
pdbbynut	03/21/2006	15:30	03/22/2006	16;31
pdbbynut	04/192006	16:00	04/20/2006	17:01
pdbbynut	05/16/2006	13:00	05/17/2006	14:01
pdbbynut	06/14/2006	12:00	06/15/2006	13:01
pdbbynut	07/19/2006	06:39	07/20/2006	08:43
pdbbynut	08/16/2006	04:56	08/17/2006	07:00
pdbbynut	09/14/2006	04:07	09/15/2006	06:11
pdbbynut	10/11/2006	01:35	10/12/2006	03:39
pdbbynut	11/30/2006	11:20	12/01/2006	13:24
pdbbynut	12/20/2006	22:00	12/21/2006	00:04

Grab Sample Collection Period – January 2006 thru December 2006

Site	Start date	Start time	End date	End time
pdbbpnut	1/10/2006	14:25	1/10/2006	14:26
pdbbpnut	1/19/2006	10:10	1/19/2006	10:11
pdbbpnut	2/2/2006	14:35	2/2/2006	14:36
pdbbpnut	3/23/2006	10:10	3/23/2006	10:11
pdbbpnut	3/29/2006	10:50	3/29/2006	10:51
pdbbpnut	4/5/2006	13:40	4/5/2006	13:41
pdbbpnut	4/26/2006	10:45	4/26/2006	10:46
pdbbpnut	5/10/2006	10:25	5/10/2006	10:26
pdbbpnut	5/31/2006	9:05	5/31/2006	9:06
pdbbpnut	6/16/2006	9:25	6/16/2006	9:26
pdbbpnut	6/28/2006	10:19	6/28/2006	10:20
pdbbpnut	7/6/2006	14:18	7/6/2006	14:19
pdbbpnut	7/27/2006	11:20	7/27/2006	11:21
pdbbpnut	8/10/2006	14:20	8/10/2006	14:21
pdbbpnut	8/30/2006	10:10	8/30/2006	10:11
pdbbpnut	9/8/2006	11:15	9/8/2006	11:16
pdbbpnut	9/20/2006	10:25	9/20/2006	10:26
pdbbpnut	10/5/2006	11:04	10/5/2006	11:05
pdbbpnut	10/27/2006	10:05	10/27/2006	10:06
pdbbpnut	11/30/2006	11:40	11/30/2006	11:41
pdbbpnu	12/6/2006	10:55	12/6/2006	10:56

Site	Start date	Start ti	me End date	End time
pdbbynut	1/10/2006	14:50	1/10/2006	14:51
pdbbynut	1/19/2006	9:50	1/19/2006	9:51
pdbbynut	2/2/2006	15:20	2/2/2006	15:21
pdbbynut	3/23/2006	10:40	3/23/2006	10:41
pdbbynut	3/29/2006	10:15	3/29/2006	10:16
pdbbynut	4/5/2006	14:10	4/5/2006	14:11
pdbbynut	4/26/2006	11:20	4/26/2006	11:21
pdbbynut	5/10/2006	9:35	5/10/2006	9:36
pdbbynut	5/31/2006	10:10	5/31/2006	10:11
pdbbynut	6/16/2006	9:00	6/16/2006	9:01
pdbbynut	6/28/2006	11:26	6/28/2006	11:27
pdbbynut	7/6/2006	13:56	7/6/2006	13:57
pdbbynut	7/27/2006	11:58	7/27/2006	11:59
pdbbynut	8/10/2006	13:25	8/10/2006	13:26
pdbbynut	8/30/2006	10:40	8/30/2006	10:41
pdbbynut	9/8/2006	11:50	9/8/2006	11:51
pdbbynut	9/20/2006	11:00	9/20/2006	11:01
pdbbynut	10/5/2006	9:55	10/5/2006	9:56
pdbbynut	10/27/2006	10:00	10/27/2006	10:01
pdbbynut	11/30/2006	11:21	11/30/2006	11:21
pdbbynut	12/6/2006	11:15	12/6/2006	11:16

Site	Start date	Start time	End date	End time
pdbgsnut	1/10/2006	16:55	1/10/2006	16:56
pdbgsnut	1/19/2006	10:20	1/19/2006	10:21
pdbgsnut	2/2/2006	14:00	2/2/2006	14:01
pdbgsnut	3/23/2006	9:40	3/23/2006	9:41
pdbgsnut	3/29/2006	11:15	3/29/2006	11:16
pdbgsnut	4/5/2006	13:20	4/5/2006	13:21
pdbgsnut	4/26/2006	10:10	4/26/2006	10:11
pdbgsnut	5/10/2006	9:55	5/10/2006	9:56
pdbgsnut	5/31/2006	9:27	5/31/2006	9:28
pdbgsnut	6/16/2006	9:35	6/16/2006	9:36
pdbgsnut	6/28/2006	10:51	6/28/2006	10:52
pdbgsnut	7/6/2006	14:34	7/6/2006	14:35
pdbgsnut	7/27/2006	10:45	7/27/2006	10:46
pdbgsnut	8/10/2006	13:40	8/10/2006	13:41
pdbgsnut	8/30/2006	9:45	8/30/2006	9:46
pdbgsnut	9/8/2006	10:50	9/8/2006	10:51
pdbgsnut	9/20/2006	10:05	9/20/2006	10:06
pdbgsnut	10/5/2006	10:30	10/5/2006	10:31
pdbgsnut	10/27/2006	10:20	10/27/2006	10:21
pdbgsnut	12/6/2006	10:40	12/6/2006	10:41

Site	Start date	Start time	End date	End time
pdbjlnut	1/10/2006	15:35	1/10/2006	15:36
pdbjlnut	1/19/2006	11:35	1/19/2006	11:36
pdbjlnut	2/2/2006	12:45	2/2/2006	12:46
pdbjlnut	3/23/2006	12:05	3/23/2006	12:06
pdbjlnut	3/29/2006	12:25	3/29/2006	12:26
pdbjlnut	4/5/2006	9:40	4/5/2006	9:41
pdbjlnut	4/26/2006	13:50	4/26/2006	13:51
pdbjlnut	5/10/2006	12:45	5/10/2006	12:46
pdbjlnut	5/31/2006	12:40	5/31/2006	12:41
pdbjlnut	6/16/2006	10:30	6/16/2006	10:31
pdbjlnut	6/28/2006	13:56	6/28/2006	13:57
pdbjlnut	7/6/2006	11:54	7/6/2006	11:55
pdbjlnut	7/27/2006	9:40	7/27/2006	9:41
pdbjlnut	8/30/2006	12:45	8/30/2006	12:46
pdbjlnut	9/8/2006	9:40	9/8/2006	9:41
pdbjlnut	9/20/2006	11:55	9/20/2006	11:56
pdbjlnut	10/5/2006	12:05	10/5/2006	12:06
pdbjlnut	10/27/2006	11:35	10/27/2006	11:36
pdbjlnut	11/30/2006	14:35	11/30/2006	14:36
pdbjlnut	12/6/2006	13:18	12/6/2006	13:19

7) Associated researchers and projects

SWMP Water Quality and Meteorological databases may be used to correlate this data and are available through the CDMO at http://cdmo.baruch.sc.edu/ or by contacting the PDB NERR directly. Contact the Research Coordinator for information on additional ongoing research projects.

8) Distribution

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI, Dr. Douglas Bulthuis, retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site, Padilla Bay National Estuarine Research Reserve, where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The

user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR water quality and nutrient data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Section 1. Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in text tab-delimited format, Microsoft Excel spreadsheet format and commadelimited format.

II. Physical Structure Descriptors

9) Entry verification –

Data were received from the University of Washington Chemical Oceanography Laboratory and were entered into a Microsoft Excel spreadsheet. Data were examined for suspect, anomalous or outlying data. Missing data were inserted into the spreadsheet and were denoted by a blank cell (). Data were flagged when values were below the Minimum Detection Limits (MDL) and the values were replaced with the actual minimum detection limit value. Data were flagged when concentrations were too high for the analytical method and dilution series and a -9999 denoted in the data cell. Data entry verification was completed by Nicole Burnett. Final verification and this metadata documentation were checked by Douglas Bulthuis and Nicole Burnett before being sent to the CDMO permanent database.

10) Parameter Titles and Variable Names by Data Category

Required NOAA/NERRS System-wide Monitoring Program water quality parameters are denoted by an asterisks "*".

Data Category	Parameter	Variable Name	Units of Measure
i) Phosphorus	and Nitrogen:		
	*Orthophosphate, Filtered *Ammonium, Filtered *Nitrite, Filtered *Nitrate, Filtered *Nitrite + Nitrate, Filtered Dissolved Inorganic Nitrogen	PO4F NH4F NO2F NO3F NO23F DIN	mg/L as P mg/L as N mg/L as N mg/L as N mg/L as N mg/L as N
ii) Plant Pigme	ents; *Chlorophyll a Phaeophytin	CHLA_N PHEA	μg/L μg/L
iii) Other Lab	Parameters: Silicate, Filtered	SiO4F mg/L a	s SI

Notes:

- 1. Time is coded based on a 2400 hour clock and is referenced in Pacific Standard Time (PST).
- 2. Reserves have the option of measuring either NO23 or NO2 or NO3.

11) Measured and Calculated Laboratory Parameters

a. Parameters measured directly

Nitrogen species: NO2, NO23, NH4

Phosphorus species: PO4F

Other: CHLA N, PHEA, SiO4F

b. Calculated parameters

NO3: NO23-NO2 DIN: NO23+NH4

The University of Washington Marine Chemistry Laboratory calculates and reports results in μM . For purposes of consistency in the NERR System, Padilla Bay NERR calculates the concentrations as mg/l-1 based on atomic weights of 14, 31, 28, and 12 for N, P, Si, and C respectively. Therefore the concentrations reported by the University of Washington Marine Chemistry Laboratory are multiplied by 0.014, 0.031. 0.028, and 0.012 for N, P, Si, and C respectively by Padilla Bay NERR staff and entered into the data spreadsheet.

The University of Washington Marine Chemistry Laboratory measures NO23 and NO2 in the analytical process. However, the laboratory calculates NO3 as the difference between the values as part of their internal calculations. The laboratory reports only NO3 and NO2 concentrations to Padilla Bay NERR. For purposes of consistency in the NERR System, Padilla Bay NERR determines the previously measured concentration of NO23 by adding the reported values for NO2 and NO3. Therefore, NO3 is considered a calculated parameter in the dataset, and the NO2 and NO23 parameters are considered measured parameters, since they were originally measured in the laboratory.

12) Limits of Detection

Method Detection Limits (MDL), the lowest concentration of a parameter that an analytical procedure can reliably detect, have been established by the University of Washington Marine Chemistry Laboratory. Table 1 lists the current MDL values, which are reviewed and revised periodically.

Table 1. Method Detection Limits (MDL) for measured water quality parameters.

Parameter	Variable	Range:	[Avg] μM	MDL μM	MDL mg/L	Dates in use
Ammonium	NH4F	0-3.0	1.04	0.05	0.0007	2006
Nitrite	NO2F	0-3.0	0.99	0.01	0.0001	2006
Nitrite + Nitrate	NO23F	0-20	11.59	0.15	0.0021	2006
Orthophosphate	PO4F	0-3.0	1.00	0.02	0.0001	2006

Silicate	SiO4F	0-50	15.96	0.21	0.0059	2006
Chlorophyll a and Phaeophytin	CHLA_N PHEA	See below				
Nitrite + Nitrate, Filtered	NO23F	See below			0.0022	2006

CHLA and PHEA:

Fluorometric analysis done on a Turner Model TD700 fluorometer. Published detection limit is $0.02~\mu g/L$. This is the lowest EXTRACT concentration measurable on the instrument. Turner Designs (1999) TD-700 Laboratory Fluorometer Operating Manual. p. 49.

13) Laboratory Methods

a) Parameter: Ammonium

- i) Method Reference: Slawyk, G. and MacIsaac, J.J. (1972) Comparison of two automated ammonium methods in a region of coastal upwelling. *Deep Sea Research* 19:521-524.
- *ii)* Method Descriptor: A water sample is treated with phenol and alkaline hypochlorite in the presence of NH3 to form indophenol blue (Berthelot reaction). Sodium nitroferricyanide is used as a catalyst in the reaction. Precipitation of Ca and Mg hydroxides is eliminated by the addition of sodium citrate-complexing reagent. The sample stream is passed through a 55 °C heating bath, then through a 50 mm flowcell and absorbance is measured at 640 nm.
- iii) <u>Preservation Method:</u> Sample is filtered through a 0.45 um disposable disk filter and stored at -20°C until analyzed.

b) Parameter: NO3F, NO2, NO23

- i) Method Reference: Armstrong, F.A., Stearns, C.R. and Strickland, J.D.H. (1967) The measurement of upwelling and subsequent biological processes by means of the Technicon AutoAnalyzer and associated equipment. *Deep Sea Research* 14:381-389.
- ii) Method Descriptor: A water sample is passed through a cadmium column where the nitrate is reduced to nitrite. This nitrite is then diazotized with sulfanilamide and coupled with N-(1-naphthyl)-ethylenediamine to form an azo dye. The sample is then passed through a 15 mm flowcell and absorbance is measured at 540 nm. A 50 mm flowcell is required for nitrite (NO2). The procedure is the same for the nitrite analysis less the cadmium column. Nitrate concentration equals the (nitrate+nitrite) concentration minus the nitrite concentration. NO23 is calculated by adding NO2 + NO3.
- iii) <u>Preservation Method:</u> Sample is filtered through a 0.45 um disposable disk filter and stored at -20°C until analyzed.

c) Parameter: SI, SiO4

i) <u>Method Reference</u>: Armstrong, F.A., Stearns, C.R. and Strickland, J.D.H. (1967) The measurement of upwelling and subsequent biological processes by means of

- the Technicon AutoAnalyzer and associated equipment. *Deep Sea Research* 14:381-389.
- ii) Method Descriptor: Ammonium molybdate is added to a water sample to produce silicomolybdic acid which is then reduced to silicomolybdous acid (a blue compound) following the addition of stannous chloride. The sample is passed through a 15 mm flowcell and absorbance is measured at 820 nm.
- iii) <u>Preservation Method</u>: Sample is filtered through a 0.45 um disposable disk filter and stored at -20°C until analyzed.

d) Parameter: PO4F

- i) <u>Method Reference:</u> Bernhardt, H. and Wilhelms, A. (1967) The continuous determination of low level iron, soluble phosphate, and total phosphate with the AutoAnalyzer. *Technicon Symp.* 1:386.
- ii) Method Descriptor: Ammonium molybdate is added to a water sample to produce phosphomolybdic acid, which is then reduced to phosphomolybdous acid (a blue compound) following the addition of dihydrazine (or hydrazine) sulfate. The sample is passed through a 50 mm flowcell and absorbance is measured at 820 nm.
- iii) <u>Preservation Method:</u> Sample is filtered through a 0.45 um disposable disk filter and stored at -20°C until analysis.

e) Parameter: CHLA, PHEA

- i) Method References: EPA method 445.0*UNESCO* (1994) Protocols for the joint global ocean flux study (JGOFS) core measurements. pp. 97-100.
- ii) Method Descriptor: CHLA is extracted in 10 ml 90% acetone and fluorescence is measured and recorded (Fo). Several drops (5-7) of 10% HCI are added to convert the CHLA to phaeopigments (PHAE). The fluorescence is again measured and recorded (Fa). The concentration (μg/L) of CHLA and PHAE are calculated using the Fo/Fa ratio.
- iii) <u>Preservation Method:</u> A known volume of sample is filtered onto a 25 mm GF/F filter, folded in half and placed in a plastic vial. Vial is stored at -20° C until analysis.

14) Reporting of Missing Data, Data with Concentrations Lower than Method Detection

Nutrient/Chla comment codes and definitions are provided in the following table. Missing data are denoted by a blank cell " " and commented coded with an "M". Laboratories in the NERRS System submit data that are censored at a lower detection rate limit, called the Method Detection Limit or MDL. MDL's for specific parameters are listed in the Laboratory Methods and Detection Limits Section (Section II, Part 14) of this document. Measured concentrations that are less than this limit are replaced with the minimum detection limit value and comment coded with a "B" in the variable code comment column. For example, the measured concentration of NO23F was 0.0005 mg/L as N (MDL=0.0008), the reported value would be 0.0008 with a "B" placed in the NO23F comment code column. Calculated parameters are comment coded with a "C" and if any of the components used in the calculation are below the MDL, the calculated value is removed and also comment coded

with a "B". If a calculated value is negative, the value is removed and comment coded with an "N".

Note: The way below MDL values are handled in the NERRS SWMP dataset was changed in November of 2011. Previously, below MDL data from 2002-2006 were also coded with a B, but replaced with -9999 place holders. Any 2002-2006 nutrient/pigment data downloaded from the CDMO prior to December November of 2011 will contain -9999s representing below MDL concentrations.

Comment	Definition
Code	
A	Value above upper limit of method detection
В	Value below method detection limit
С	Calculated value
D	Data deleted or calculated value could not be determined due
	to deleted data, see metadata for details
Н	Sample held beyond specified holding time
K	Check metadata for further details
M	Data missing, sample never collected or calculated value could
	not be determined due to missing data
P	Significant precipitation (reserve defined, see metadata for
	further details)
U	Lab analysis from unpreserved sample
S	Data suspect, see metadata for further details

15) QA/QC Programs

a) Precision

- i) Field Variability 78 field grab samples, 73 replicates (93%). Field replicates are usually collected for all grab samples. The replicates are true field replicates. Field replicates were taken as sequential grab samples obtained with a 2.2 liter Kemmerer water sampler less than a minute apart. (See Research Methods I, 3) a) above for further detail).
- ii) **Laboratory Variability** 16 grab laboratory replicates and 27 diel laboratory replicates. (These replicate values are not available in the dataset.)
- iii) Inter-organizational splits None.

b) Accuracy

- i) Sample Spikes None for 2006.
- ii) Standard Reference Material Analysis Data not yet available for 2006.
- iii) Cross Calibration Exercises None for 2006

16) Other Remarks

On 7/14/2025 this dataset was updated to include embedded QAQC flags and codes for anomalous/suspect, rejected, missing, and below detection limit data. System-wide

monitoring data beginning in 2007 were processed to allow for QAQC flags and codes to be embedded in the data files rather than using the original single letter codes used for the nutrient and pigment dataset along with the detailed sections in the metadata document for suspect, missing, and rejected data. Please note that prior to 2007, rejected data were deleted from the dataset so they are unavailable to be used at all. Suspect, missing, rejected and below minimum detection flags and appropriate three letter codes were embedded retroactively for dataset consistency. The QAQC flag/codes corresponding to the original letter codes are detailed below.

		Historic	
Flag/code	If also C	Letter Code	Historic Code Definition
<1> [SUL]		Α	Value above upper limit of method detection
<-4> [SBL]	<-4> [SCB]	В	Value below method detection limit
no need to flag/code unless combined		С	Calculated value
<-3> [GQD]	<3> [GCR]	D	Data deleted or calculated value could not be determined due to deleted data, see metadata for details
<1> (CHB)		Н	Sample held beyond specified holding time
<0> (CSM) unless other flag		K	Check metadata for further details
<-2> [GDM]	<-2> [GCM]	М	Data missing, sample never collected or calculated value could not be determined due to missing data
<-3> [SNV] and <1> [SCC] for components		N	Negative calculated value
(CRE) or F_Record (CRE)		Р	Significant precipitation (reserve defined, see metadata for further details)
<0> (CUS)		U	Lab analysis from unpreserved sample
<1> (CSM)		S	Data suspect, see metadata for further details

- The comment code B also indicates that a component of the calculated value was below the method detection limit.
- The Joe Leary site has a very low salinity. The chlorophyll samples are analyzed as freshwater instead of marine water for this site. The methods for freshwater chlorophyll analysis do not measure phaeophytins.
- The last five samples of the 1/18/2006 diel sampling were not collected because the battery running the sampler did not hold its charge.
- The diel sample taken at 9:57 on 2/23/06 has suspicious PO4 value. It is approximately two times higher than the next highest value for the whole year.
- The grab samples for the Joe Leary site were not collected on 8/10/2006 because the site was inaccessible.
 - The two grab samples collected at Joe Leary on 8/30/06 were analyzed as marine water samples during the chlorophyll analysis instead of freshwater so the values could be overestimated.
- The filter for the chlorophyll field replicate sample from the Bayview site during the 9/20/2006 grab sampling was lost at the analytical laboratory.
- The grab samples for the Gong site were not collected on 11/30/2006 because the weather was too rough to reach the site.
- The diel sampling for 11/30/2006 was started during a high tide instead of a low tide because weather did not permit a low tide sampling.
- The tubes (for chlorophyll and phaeophytin analysis) for the samples taken at 1:24 and 20:40 during the 12/20/2006 diel sampling were cracked during transportation. The sample taken at 1:24 was completely lost, however, some of the sample taken at 20:40 was retained but the value is suspect.
- There was a major flood event on the Skagit River from Nov. 5th -7th. The rains and wind continued for the rest of the month with record accumulations.