Padilla Bay (PDB) NERR Water Quality Metadata

January – December 2011 Latest Update: June 30, 2025

I. Data Set and Research Descriptors

1) Principal investigator & contact persons:

Address: Padilla Bay NERR 10441 Bayview-Edison Road Mount Vernon, WA 98273-9668

Dr. Douglas Bulthuis, Research Coordinator, Principal Investigator

Phone: (360) 428-1089; email: <u>bulthuis@padillabay.gov</u>

Nicole Burnett, Environmental Specialist

Phone: (360) 428-1097; email: nburentt@padillabay.gov

2) Entry verification -

Deployment data are uploaded from the YSI data logger to a Personal Computer (IBM compatible). Files are exported from EcoWatch in a comma-delimited format (.CDF) and uploaded to the CDMO where they undergo automated primary QAQC; automated depth/level corrections for changes in barometric pressure (cDepth or cLevel parameters); and become part of the CDMO's online provisional database. Excessive pre- and post-deployment data are removed from the file prior to upload with up to 2 hours of pre- and post-deployment data retained to assist in data management. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the Reserve for secondary QAQC where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, remove remaining pre- and post-deployment data, append files, and export the resulting data file for upload to the CDMO. Upload after secondary QAQC results in ingestion into the database as provisional plus data, recalculation of cDepth or cLevel parameters, and finally tertiary QAQC by the CDMO and assimilation into the CDMO's authoritative online database. Where deployment overlap occurs between files, the data produced by the newly calibrated sonde is generally accepted as being the most accurate. For more information on OAOC flags and codes, see Sections 11 and 12.

Edited and raw files are archived on a PC hard drive at Padilla Bay NERR as well as on the Padilla Bay server. The Padilla Bay server is backed up as per Washington Department of Ecology protocols with backup files created weekly and monthly. Nicole Burnett completed this process of entry verification for the 2011 data. Nicole Burnett and Douglas Bulthuis completed final verification and this metadata documentation.

The following QA/QC procedures were used if it was determined that the turbidity values were not from an actual turbidity event (unless it was decided that the data should be marked in another way). All data over 100 ntu were evaluated to determine if the data were from a real event. If they were from a real event they were marked as 0 CTS, if the data were determined to be caused by other factors they were either marked as 1 or -3 and codes added. Other anomalous turbidity values below 100 ntu were also examined for validity.

Starting with the deployment 09-26-13 copper mesh was placed around the outside of the sensor guards at Ploeg and Bayview to reduce the amount of erroneous turbidity data. Two layers of plastic mesh (criss-crossing) were also put in the bottom of the guards. This has lead to much cleaner turbidity data. While all of the data was QAQC'd as described above the change in deployment is obvious in the data. All turbidity data at Ploeg and

Bayview before 09-26-13 should be interpreted with caution. This same guard was tried at Gong but without success. Turbidity data from both Gong and Joe Leary (and Joe Leary Estuary) should be interpreted with caution due to numerous spikes whose origin is unknown (i.e. true event or debris).

3) Research objectives – The Bay View Channel site has been set out to detect and monitor short-term variability and long-term changes in the southern part of Padilla Bay. The Ploeg Channel site has been set out to detect and monitor short-term variability and long-term change in the northern part of Padilla Bay for comparison and contrast with water quality in the southern part of the bay. The Joe Leary Slough site has been set at the mouth of the slough to measure the effects of tidal "closure" of the tide gates on water in the slough and to detect long-term changes in water quality in the slough associated with implementation of a non point source pollution watershed action plan. The Joe Leary Estuary site has been set out to improve data collection in Joe Leary Slough and replaces the Joe Leary Slough site. Although it is outside the tide gates (on the marine side of the tide gates) it provides data on the freshwater coming out of the tide gates when they are open. The Gong site has been set in the deep water strait west of the northern part of Padilla Bay to monitor short-term variability and long-term change in the waters that are a source for the tidal waters flowing into Padilla Bay. The four sites are set up to provide an indication of the salinity gradient from Joe Leary Slough (freshwater) through Bayview Channel (downstream of freshwater sources from Indian and No Name Sloughs) to Ploeg Channel (remote from freshwater sources but in a tidal channel) to Gong on the marine end of the gradient. Measurements are taken every 15 minutes at the Bayview, Ploeg, Gong and Joe Leary sites, unless otherwise noted.

4) Research methods -

YSI 6600 sondes were deployed in Joe Leary Estuary which is near the tide gates on Joe Leary Slough but on the marine side starting March 25, 2009. The sonde is housed in an ABS pipe. The ABS is attached to a wood piling and is positioned so that the sonde is 0.1 m above the bottom on the sloping edge of the slough.

YSI 6600 sondes were deployed in Padilla Bay in a tributary of Bayview Channel. They were deployed using the same design as that in Joe Leary Slough, except that the ABS pipe was attached to a 8 inch galvanized steel pile. The depth of the YSI was -1.1 m (depth below MLLW) and about 0.6 m above the bottom along the sloping edge of a small channel draining the surrounding intertidal flats.

YSI 6600 sondes were deployed in Ploeg Channel using the same design as that in Bayview Channel. The depth of the datalogger was –1.33 m (depth below MLLW) and 0.33 m above the bottom along the sloping edge of a channel draining the surrounding intertidal flats. Sometime between 11/23/10 and 12/30/10 the ABS pipe began to fail and then completely failed becoming detached from the steel pile. The ABS pipe was reinstalled in 1/11/2011 with the bottom of the sonde now 0.25 m above the bottom.

YSI 6600 sondes were deployed at the Gong site with the sonde housing tube located on the side of a 54 inch diameter oceanographic data buoy with an instrument tower and extends into the water so the sonde sits 1 meter below the surface of the water. (Note: the depth data thus reflects depth the sonde is under the surface of the water and prone to wave action on the buoy, not the height above the bottom as in the other sites.) That portion of sonde housing tube around the sensors (to bottom 8" of the tube) has ten $1\frac{1}{2}$ " holes and the bottom of tube is open to the water. This allows water to circulate around the probes while still having a substantial amount of pipe intact to protect the sonde and sensors. The buoy is anchored to the bottom (\sim 18 m) with a 1250 lb lead anchor. The anchor system failed 8/1/09 and the buoy was not deployed again until 2/24/2010.

In all cases, measurements of temperature, specific conductivity, and salinity, percent saturation of dissolved oxygen, depth, pH and turbidity are recorded every 15 minutes. At the end of each deployment, the YSI 6600 is brought back into the laboratory for downloading, cleaning, and recalibration. Before final cleaning and

recalibration a post-deployment check is done that consists of recording sensor readings in the standard solutions. The results of these checks are used to help evaluate the validity of the logged data.

All calibrations are conducted according to the protocols in the YSI Environmental Operations Manual for the 6-Series Environmental Monitoring Systems. For the conductivity calibration a conductivity standard of 50 mS/cm was used. The pH calibration is a 2-point calibration using standard buffer solutions with a pH of 7 and 10. ROX oxygen probes only require yearly membrane maintenance and are calibrated in saturated water using 2 air stones to obtained 100% saturation. A 2-point calibration is used for the turbidity probe and the wiper pad is changed prior to each deployment. The standards used are distilled/deionized water for zero and 126 NTU YSI turbidity standard from YSI.

A Sutron Sat-Link2 transmitter was installed at the Joe Leary station from 12/20/05 to 7/24/09 and transmitted data to the NOAA GOES satellite, NESDIS ID #3B004470 (Where # 3B004470 is the GOES ID for that particular station.) The same transmitter was installed at the Ploeg site on 10/7/09 and retains the NESDIS ID. A second Sutron Sat-Link2 transmitter was installed at the Bayview site on 09/02/09 and transmits data to the NOAA GOES satellite, NESDIS ID # 3B041136 (Where # 3B041136 is the GOES ID for that particular station.) The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at http://cdmo.baruch.sc.edu.

5) Site location and character –

General: Padilla Bay (48° 30' N; 122° 30' W) is a shallow embayment in northern Puget Sound. The tide flats are dominated by the eelgrass *Zostera marina*, which covers approximately 3,000 ha. *Zostera japonica*, a recent introduction to the region, now covers about 350 ha of the bay. Tides are mixed semi-diurnal with a mean range of 1.55 m. Salinity varies from about 23 to 32 PSU. Padilla Bay is an "orphaned" estuary in that the Skagit River no longer empties directly into it. Most of the land in the 9300 ha Padilla Bay watershed is agricultural, and is drained by four sloughs which empty into the bay through tide gates. The salinity in Padilla Bay reflects both the sloughs that flow into the bay and the greater Puget Sound-Georgia Basin estuary in which Padilla Bay is located. Major freshwater flows into this area of the Puget Sound-Georgia Basin estuary come from the Fraser and Nooksack Rivers to the north and from the Skagit River to the south. The small Samish River discharges directly north of Padilla Bay.

Joe Leary Estuary Site: (48° 31' 08.1" N; 122° 28' 29.74" W) The site description for the Joe Leary Estuary Site is the same as for discontinued Joe Leary Slough site (which was in existence from 12/20/00 to 6/16/09) except that Joe Leary Estuary site is located on the marine side of the tide gates and is as follows. Joe Leary Slough drains land that is predominantly annual crop agriculture, pasture land, and berries with some low-density housing. The slough is characterized by high fecal and nutrient inputs, high turbidity, and low dissolved oxygen concentrations. During the summer, there is low flow. There is a dam at the mouth of the slough with twelve 4 ft. diameter outfall pipes that have one-way hinged tide gates. Upstream water flows out of Joe Leary Slough when water height in Padilla Bay is lower than water height in Joe Leary Slough (i.e. ebbing tide and low water). The bottom of the slough is composed of very soft sediment. This site is characterized by fully marine water ranging in salinity 23 to 32 PSU when the tide gates are closed and by water that is fully fresh (0.5 PSU) when the tide gates are open. The switch from marine to fresh water and vice versa occurs rapidly (< 1 hour) each time there is a tide change. The latitude/longitude were measured with a handheld GPS unit with an accuracy of ± 6.7m.

Bayview Channel Site: (48° 29' 46.6" N; 122° 30' 01.8" W) Bayview Channel, a major Padilla Bay tributary/distributary, floods and drains intertidal flats including eelgrass beds, mats of macroalgae, and flats without macro-vegetation. The datalogger is located in a tributary channel to Bayview Channel. The tributary drains predominately eelgrass (*Zostera marina* and *Z. japonica*) covered intertidal flats. Bottom sediments beneath the deployment site are fine silt and clay overlying sand. Depth at this site is –1.5 m (depth below MLLW). Pollutants entering the bay include with general non-point source, agricultural non-point source, and fecal coliform bacteria from agriculture, failing septic tanks and wildlife. The latitude/longitude were measured

with a Trimble GeoExplorer II and differentially corrected with post processing providing a manufacturer's stated accuracy of \pm 5 m.

Ploeg Channel Site: $(48^{\circ} 33' 23.5" \text{ N}; 122^{\circ} 31' 46.7" \text{ W})$ Ploeg Channel floods and drains intertidal flats at the north end of Padilla Bay that are comprised of intertidal flats with eelgrass beds (*Zostera marina* and *Z. japonica*) and intertidal flats without macro-vegetation in approximately equal amounts. Bottom sediments beneath the deployment site are fine silt. Depth at this site is -1.5 m (depth below MLLW). Pollutants entering the bay include general non-point source, agricultural non-point source, and fecal coliform bacteria from agriculture, failing septic tanks and wildlife. The latitude/longitude were measured with a Trimble GeoExplorer II and differentially corrected with post processing providing a manufacturer's stated accuracy of ± 5 m.

Gong Site: $(48^{\circ} 33' 30'' \text{ N}; 122^{\circ} 34' 21'' \text{ W})$ The Gong site is located at -18 m water depth on a gradually sloping bottom (from -1 m to -75 m over 2 km) in the strait between Samish and Guemes Islands. Water in the strait flows north and south with tidal currents, the net water movement is apparently south toward the inlet to Guemes Channel. Water from the strait flows onto the intertidal flats in the northern part of Padilla Bay with each tidal cycle. Bottom sediments are mud. YSI 6600 sondes are deployed near the surface at this site 0.5 m below the water surface. The only apparent pollution sources are the general sources of pollution to the Strait of Georgia and Northwest Straits. The latitude/longitude were measured with a Trimble GeoExplorer II and differentially corrected with post processing providing a manufacturer's stated accuracy of ± 5 m.

6) Data collection period –

Data collection was continuous from January 1 to December 31, 2010 at Bayview Channel, Joe Leary Estuary site, and Gong site except as noted in the flagged data (explained in section 11). Data collection was continuous January 11 to December 31, 2011 at Ploeg Channel site except as noted in the flagged data (explained in section 11).

Deployment and retrieval times are listed below. The times indicate the first and last measurements made with each deployment. Initial collection began at Bayview site in 1995, at the Ploeg Channel site in 2001, at the Gong Surface site in 2003, and at the Joe Leary Estuary site in 2009.

Bayview

Date	Time	Date	Time
12/16/10	10:45	01/07/11	13:00
01/07/11	13:15	02/03/11	9:45
02/03/11	10:00	03/08/11	9:30
03/08/11	10:00	04/08/11	8:00
04/08/11	8:15	4/28/11	9:15
04/28/11	9:30	05/12/11	12:00
05/12/11	12:30	06/07/11	11:00
06/07/11	11:15	07/07/11	9:00
07/07/11	9:30	08/3/11	7:30
08/03/11	7:45	09/01/11	8:15
09/01/11	8:30	09/22/11	9:15
09/22/11	9:30	10/20/11	8:15
10/20/11	8:30	11/16/11	9:30
11/16/11	10:00	12/14/11	11:00
12/14/11	11:30	01/12/12	9:30

Ploeg

Date	Time	Date	Time

02/03/11 9:30 03/08/11 9:00 03/08/11 9:15 04/08/11 7:30 04/08/11 8:00 04/15/11 10:30 04/15/11 11:00 04/28/11 8:30 04/28/11 9:00 05/12/11 10:45 05/12/11 11:00 06/07/11 10:00 06/07/11 10:30 07/07/11 8:45 07/07/11 9:00 08/03/11 8:00 08/03/11 8:15 09/01/11 9:00 09/01/11 9:15 9/22/11 8:30 09/22/11 9:00 10/20/11 9:40 10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 *First deployment of the year	*01/11/11	116:45	02/03/11	9:15
04/08/11 8:00 04/15/11 10:30 04/15/11 11:00 04/28/11 8:30 04/28/11 9:00 05/12/11 10:45 05/12/11 11:00 06/07/11 10:00 06/07/11 10:30 07/07/11 8:45 07/07/11 9:00 08/03/11 8:00 08/03/11 8:15 09/01/11 9:00 09/01/11 9:15 9/22/11 8:30 09/22/11 9:00 10/20/11 9:40 10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	02/03/11	9:30	03/08/11	9:00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/08/11	9:15	04/08/11	7:30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04/08/11	8:00	04/15/11	10:30
05/12/11 11:00 06/07/11 10:00 06/07/11 10:30 07/07/11 8:45 07/07/11 9:00 08/03/11 8:00 08/03/11 8:15 09/01/11 9:00 09/01/11 9:15 9/22/11 8:30 09/22/11 9:00 10/20/11 9:40 10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	04/15/11	11:00	04/28/11	8:30
06/07/11 10:30 07/07/11 8:45 07/07/11 9:00 08/03/11 8:00 08/03/11 8:15 09/01/11 9:00 09/01/11 9:15 9/22/11 8:30 09/22/11 9:00 10/20/11 9:40 10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	04/28/11	9:00	05/12/11	10:45
07/07/11 9:00 08/03/11 8:00 08/03/11 8:15 09/01/11 9:00 09/01/11 9:15 9/22/11 8:30 09/22/11 9:00 10/20/11 9:40 10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	05/12/11	11:00	06/07/11	10:00
08/03/11 8:15 09/01/11 9:00 09/01/11 9:15 9/22/11 8:30 09/22/11 9:00 10/20/11 9:40 10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	06/07/11	10:30	07/07/11	8:45
09/01/11 9:15 9/22/11 8:30 09/22/11 9:00 10/20/11 9:40 10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	07/07/11	9:00	08/03/11	8:00
09/22/11 9:00 10/20/11 9:40 10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	08/03/11	8:15	09/01/11	9:00
10/20/11 10:15 11/16/11 9:00 11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	09/01/11	9:15	9/22/11	8:30
11/16/11 9:30 12/14/11 10:00 12/14/11 10:30 1/12/12 10:30	09/22/11	9:00	10/20/11	9:40
12/14/11 10:30 1/12/12 10:30	10/20/11	10:15	11/16/11	9:00
	11/16/11	9:30	12/14/11	10:00
*First deployment of the year	12/14/11	10:30	1/12/12	10:30
	*First dep	oloyment o	f the year	

Gong

Date	Time	Date	Time
12/14/11	9:45	01/11/11	10:30
01/11/11	10:45	02/03/11	9:30
02/03/11	10:00	03/08/11	8:45
03/08/11	9:00	04/08/11	7:15
04/08/11	7:30	04/28/11	7:45
04/28/11	8:00	05/12/11	9:45
05/12/11	10:00	06/07/11	9:45
06/07/11	10:15	07/07/11	8:00
07/07/11	8:15	08/03/11	8:30
08/03/11	9:00	09/01/11	9:30
09/01/11	10:00	09/22/11	12:45
09/22/11	13:15	10/20/11	9:00
10/20/11	9:15	11/18/11	9:30
11/18/11	9:45	12/14/11	9:45
12/14/11	10:00	01/12/12	10:45

Joe Leary Estuary

Date	Time	Date	Time
12/16/10	16:30	01/11/11	17:45
01/11/11	18:00	02/03/11	8:30
02/03/11	8:45	03/08/11	11:00
03/08/11	11:15	04/07/11	9:15
04/07/11	10:00	04/27/11	9:00
04/27/11	9:30	05/12/11	7:00
05/12/11	7:30	06/07/11	13:00
06/07/11	13:15	07/07/11	12:45
07/07/11	13:15	08/03/11	14:15
08/03/11	14:30	09/02/11	10:00
09/02/11	10:15	09/22/11	13:30
09/22/11	13:45	10/20/11	11:30

10/20/11	11:45	11/16/11	11:15
11/16/11	11:30	12/14/11	12:45
12/14/11	13:15	1/12/12	14:45

7) Distribution –

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. The NERRS retains the right to be fully credited for having collected and process the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

Requested citation format:

National Estuarine Research Reserve System (NERRS). 2012. System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: http://cdmo.baruch.sc.edu/; accessed 12 October 2012.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in comma delimited format.

8) Associated researchers and projects— The Padilla Bay NERR collects weather parameters that include Temperature, Relative Humidity, Barometric Pressure, Wind Speed, Wind Direction, LI-COR and Precipitation. The weather station is located at the Southern end of Padilla Bay and can be viewed in near real-time at http://cdmo.baruch.sc.edu.

In addition, water samples are collected at all 4 YSI sites and are filtered for nutrients and chlorophyll a. *See Meteorological and Nutrient data at http://cdmo.baruch.sc.edu for more information.

II. Physical Structure Descriptors

9) Sensor specifications –

PDB NERR deployed 6600EDS sondes and 6600 EDS sondes that were upgraded to the 6600 V sondes in 2011. All of the sondes are configured the same way. All sondes used the flat glass pH probe (5091FG) from January to April 2011. From April to December 2011 all sondes used the fast response pH probe (6589FR).

YSI 6600EDS data sonde:

Parameter: Temperature Units: Celsius (C)

Sensor Type: Thermistor

Model#: 6560 Range: -5 to 50 C Accuracy: +/- 0.15 Resolution: 0.01 C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: 4-electrode cell with autoranging

Model#: 6560

Range: 0 to 100 mS/cm

Accuracy: $\pm -0.5\%$ of reading ± 0.001 mS/cm

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependant)

Parameter: Salinity

Units: parts per thousand (ppt)

Sensor Type: Calculated from conductivity and temperature

Range: 0 to 70 ppt

Accuracy: +/- 1.0% of reading pr 0.1 ppt, whichever is greater

Resolution: 0.01 ppt

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 6150 ROX

Range: 0 to 500% air saturation

Accuracy: 0-200% air saturation: +/- 1% of the reading or 1% air saturation, whichever is greater 200-500%

air saturation: +/- 15% or reading Resolution: 0.1% air saturation

Units: milligrams/Liter (mg/L)

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 6150 ROX Range: 0 to 50 mg/L

Accuracy: 0-20 mg/L: +/-0.1 mg/l or 1% of the reading, whichever is greater

20 to 50 mg/L: +/- 15% of the reading

Resolution: 0.01 mg/L

Parameter: Non-vented Level – Shallow or Medium (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 30 ft (9.1 m) Accuracy: +/- 0.06 ft (0.018 m) Resolution: 0.001 ft (0.001 m)

Parameter: pH –EDS flat glass probe or bulb probe (beginning in April 2011)

Units: pH units

Sensor Type: Glass combination electrode

Model#: 5091FG or 6589FR

Range: 0 to 14 units Accuracy: +/- 0.2 units Resolution: 0.01 units

Parameter: Turbidity

Units: nephelometric turbidity units (NTU)

Sensor Type: Optical, 90 degree scatter, with mechanical cleaning

Model#: 6136

Range: 0 to 1000 NTU

Accuracy: +/- 2% of reading or 0.3 NTU (whichever is greater)

Resolution: 0.1 NTU

Dissolved Oxygen Qualifier (Rapid Pulse / Clark type sensor):

The reliability of dissolved oxygen (DO) data collected with the rapid pulse / Clark type sensor after 96 hours post-deployment for non-EDS (Extended Deployment System) data sondes may be problematic due to fouling which forms on the DO probe membrane during some deployments (Wenner et al. 2001). Some Reserves utilize the YSI 6600 EDS data sondes, which increase DO accuracy and longevity by reducing the environmental effects of fouling. Optical DO probes have further improved data reliability. The user is therefore advised to consult the metadata for sensor type information and to exercise caution when utilizing rapid pulse / Clark type sensor DO data beyond the initial 96-hour time period. Potential drift is not always problematic for some uses of the data, i.e. periodicity analysis. It should also be noted that the amount of fouling is very site specific and that not all data are affected. If there are concerns about fouling impacts on DO data beyond any information documented in the metadata and/or QAQC flags/codes, please contact the Research Coordinator at the specific NERR site regarding site and seasonal variation in fouling of the DO sensor.

Depth Qualifier:

The NERR System-Wide Monitoring Program utilizes YSI data sondes that can be equipped with either vented or non-vented depth/level sensors. Readings for both vented and non-vented sensors are automatically compensated for water density change due to variations in temperature and salinity; but for all non-vented depth measurements, changes in atmospheric pressure between calibrations appear as changes in water depth. The error is equal to approximately 1.03 cm for every 1 millibar change in atmospheric pressure, and is eliminated for vented sensors because they are vented to the atmosphere throughout the deployment time interval.

Beginning in 2006, NERR SWMP standard calibration protocol calls for all non-vented depth sensors to read 0 meters at a (local) barometric pressure of 1013.25 mb (760 mm/hg). To achieve this, each site calibrates their depth sensor with a depth offset number, which is calculated using the actual atmospheric pressure at the time of calibration and the equation provided in the SWMP calibration sheet or digital calibration log. This offset procedure standardizes each depth calibration for the entire NERR System. If accurate atmospheric pressure data are available, non-vented sensor depth measurements at any NERR can be corrected.

In 2010, the CDMO began automatically correcting depth/level data for changes in barometric pressure as measured by the Reserve's associated meteorological station during data ingestion. These corrected depth/level data are reported as cDepth and cLevel, and are assigned QAQC flags and codes based on QAQC protocols. Please see sections 11 and 12 for QAQC flag and code definitions.

Salinity Units Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by Reserves. While the 6600 series sondes report salinity in parts per thousand (ppt) units, the EXO sondes report practical salinity units (psu). These units are essentially the same and for SWMP purposes are understood to be equivalent, however psu is considered the more appropriate designation. Moving forward the NERR System will assign psu salinity units for all data regardless of sonde type.

Turbidity Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by Reserves. While the 6600 series sondes report turbidity in nephelometric turbidity units (NTU), the EXO sondes use formazin nephelometric units (FNU). These units are essentially the same but indicate a difference in sensor methodology, for SWMP purposes they will be considered equivalent. Moving forward, the NERR System will use FNU/NTU as the designated units for all turbidity data regardless of sonde type. If turbidity units and sensor methodology are of concern, please see the Sensor Specifications portion of the metadata.

10) Coded variable definitions –

Sampling station:	Sampling site code:	Station code:
-------------------	---------------------	---------------

Bayview Channel	BY	pdbbywq
Ploeg Channel	BP	pdbbpwq
Joe Leary Estuary	JE	pdbjewq
Gong Surface	GS	pdbgswq

11) QAQC flag definitions –

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is missing and above or below sensor range. All remaining data are then flagged 0, passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Depth collected from surface or near surface sonde

- 3 Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions -

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F Record column.

General Errors

CIC	3. T	•	1 1	1	1 .	•
GIC	Nο	instrument	denloy	<i>r</i> ed	due to) ice

GIM Instrument malfunction

GIT Instrument recording error; recovered telemetry data

GMC No instrument deployed due to maintenance/calibration

GNF Deployment tube clogged / no flow

GOW Out of water event

GPF Power failure / low battery

GQR Data rejected due to QA/QC checks

GSM See metadata

Corrected Depth/Level Data Codes

GCC Calculated with data that were corrected during QA/QC

GCM Calculated value could not be determined due to missing data

GCR Calculated value could not be determined due to rejected data

GCS Calculated value suspect due to questionable data

GCU Calculated value could not be determined due to unavailable data

Sensor Errors

SBO	Blocked	

SCF Conductivity sensor failure

SCS Chlorophyll spike

SDF Depth port frozen

SDG Suspect due to sensor diagnostics

	SDO	DO suspect
	SDP	DO membrane puncture
	SFD	Depth from a surface or near surface sonde deployed from a floating platform,
		does not reflect the depth of the water column or tidal change
	SIC	Incorrect calibration / contaminated standard
	SNV	Negative value
	SOW	Sensor out of water
	SPC	Post calibration out of range
	SQR	Data rejected due to QAQC checks
	SSD	Sensor drift
	SSM	Sensor malfunction
	SSR	Sensor removed / not deployed
	STF	Catastrophic temperature sensor failure
	STS	Turbidity spike
	SWM	Wiper malfunction / loss
	SXD	Depth from a surface or near surface sonde deployed at a fixed depth, offset to substrate may be applied
Co	mments	
	CAB*	Algal bloom
	CAB*	Algal bloom Acceptable calibration/accuracy error of sensor
	CAF	Acceptable calibration/accuracy error of sensor
	CAF CAP	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure
	CAF CAP CBF	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure Biofouling
	CAF CAP CBF CCU	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure Biofouling Cause unknown
	CAF CAP CBF CCU CDA*	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure Biofouling Cause unknown DO hypoxia (<3 mg/L)
	CAF CAP CBF CCU CDA* CDB*	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure Biofouling Cause unknown DO hypoxia (<3 mg/L) Disturbed bottom
	CAF CAP CBF CCU CDA* CDB* CDF	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure Biofouling Cause unknown DO hypoxia (<3 mg/L) Disturbed bottom Data appear to fit conditions
	CAF CAP CBF CCU CDA* CDB* CDF	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure Biofouling Cause unknown DO hypoxia (<3 mg/L) Disturbed bottom Data appear to fit conditions Fish kill
	CAF CAP CBF CCU CDA* CDB* CDF CFK*	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure Biofouling Cause unknown DO hypoxia (<3 mg/L) Disturbed bottom Data appear to fit conditions Fish kill Surface ice present at sample station
	CAF CAP CBF CCU CDA* CDB* CDF CFK* CIP* CLT*	Acceptable calibration/accuracy error of sensor Depth sensor in water, affected by atmospheric pressure Biofouling Cause unknown DO hypoxia (<3 mg/L) Disturbed bottom Data appear to fit conditions Fish kill Surface ice present at sample station Low tide

CRE* Significant rain event

CSM* See metadata

CTS Turbidity spike

CVT* Possible vandalism/tampering

CWD* Data collected at wrong depth

CWE* Significant weather event

13) Post deployment information –

End of deployment post-calibration readings in standard solutions.

Site

Bayview

Deployment							
Date	SpCond	DO 1	рΗ	pН	Turb	Turb	Depth
	-	(100%	-	-		126	-
m/d/y	50ms/cm	sat)	(7)	(10)	0 ntu	ntu	m
12/16/2010	49.94	100.2	7.06	10.05	-0.10	126.90	0.000
1/7/2011	49.95	102.3	7.00	9.98	0.10	124.50	0.229
2/3/2011	50.76	100.2	6.88	9.79	0.00	125.80	0.039
3/8/2011	49.91	101.1	7.10	10.11	0.00	125.10	0.115
4/7/2011	49.77	102.5	7.03	10.03	0.00	127.10	0.224
4/28/2011	49.73	101.4	7.07	10.10	0.20	125.10	0.088
5/12/2011	49.57	101.2	7.07	10.05	0.30	124.70	0.151
6/7/2011	49.76	100.5	7.09	10.06	2.10	125.00	0.146
7/7/2011	49.63	100.7	7.05	10.02	0.70	126.50	0.065
8/3/2011	49.90	102.1	7.05	10.03	0.30	126.10	0.164
9/1/2011	49.17	101.8	7.04	10.01	0.30	124.70	0.048
9/22/2011	49.70	103.0	7.04	10.01	0.20	124.60	0.099
10/20/2011	49.97	101.7	7.05	10.04	0.20	125.50	0.010
11/16/2011	48.98	102.7	7.07	10.06	0.10	125.70	0.107
12/14/2011	49.33	103.9	7.07	10.05	0.10	125.00	0.112

Ploeg

Deployment							
Date	SpCond	DO 1	pН	рΗ	Turb	Turb	Depth
	50	(100%	-	-		126	-
m/d/y	ms/cm	sat)	(7)	(10)	0 ntu	ntu	m
12/16/2010		*no po	st-calibra	ation bec	ause all	data was	rejected
1/11/2011	50.23	102.3	7.02	10.02	0.00	124.20	0.157
2/3/2011	50.04	100.1	7.01	9.97	0.10	125.60	0.053
3/8/2011	49.34	101.6	7.13	10.12	0.10	126.00	0.115
4/7/2011	50.71	102.5	7.01	10.01	0.10	125.20	0.123
4/15/2011	49.75	101.5	7.03	10.04	0.10	126.70	0.176

4/28/2011	50.13	101.5	7.04	10.03	0.20	125.30	0.079
5/12/2011	50.32	101.5	broken	probe	0.10	124.80	0.133
6/6/2011	50.49	98.7	7.05	10.03	0.30	126.10	0.112
7/7/2011	49.75	101.1	7.06	10.05	0.60	127.60	0.078
8/3/2011	50.61	102.1	7.07	10.06	0.10	125.40	0.156
9/1/2011	50.22	101.7	7.04	9.99	0.20	124.80	0.049
9/22/2011	49.49	103.5	7.05	10.04	0.30	124.70	0.111
10/20/2011	50.62	101.5	7.09	10.07	0.00	126.20	0.020
11/16/2011	47.56	102.9	7.05	10.04	0.10	125.80	0.109
12/14/2011	50.75	104.2	7.03	10.01	0.20	124.50	0.241

Gong

Deployment							
Date	SpCond	DO 1	рΗ	рН	Turb	Turb	Depth
	50						
m/d/y	ms/cm	(100% sat)	(7)	(10)	0 ntu	126 ntu	m
1/11/2011	50.10	102.6	7.06	10.02	0.1	124.8	0.158
2/3/2011	50.04	100.6	6.95	9.87	0.0	126.2	0.053
3/8/2011	49.77	101.4	7.13	10.13	-0.1	125.8	0.119
4/7/2011	49.96	102.5	7.02	10.02	0.1	126.7	0.228
4/28/2011	50.44	101.7	7.02	10.05	0.1	124.9	0.089
5/12/2011	48.98	101.9	7.10	10.06	0.3	125.6	0.156
6/7/2011	50.30	97.6	7.08	10.04	0.1	125.4	0.144
7/7/2011	49.86	101.8	7.01	10.02	0.0	125.6	0.081
8/3/2011	49.95	102.4	7.05	10.04	0.3	124.9	0.177
9/1/2011	50.22	100.8	7.05	10.03	0.1	125.0	0.069
9/22/2011	49.82	102.5	7.09	10.06	0.3	124.3	0.103
10/20/2011	Sonde	Malfunction					
11/18/2011	49.30	103.3	7.08	10.05	0.2	125.3	0.149
12/14/2011	49.67	104.3	7.04	10.04	0.3	125.6	0.212
12/16/2010	49.75	100.8	7.02	10.01	0.1	125.8	-0.016

Joe Estuary

Deployment							
Date	SpCond	DO 1	рΗ	рΗ	Turb	Turb	Depth
	50	(100%					
m/d/y	ms/cm	sat)	(7)	(10)	0 ntu	126 ntu	m
12/16/2010	50.70	93.8	7.08	10.00	0.1	125.7	-0.040
1/11/2011	50.54	102.1	7.08	10.10	0.0	125.3	0.160
2/3/2011	50.30	104.2	7.02	9.96	0.4	126.0	0.020
3/8/2011	50.12	101.2	7.05	10.07	-0.2	124.6	0.128
4/7/2011	49.58	100.8	7.02	10.02	0.1	127.3	0.133
4/27/2011	50.82	102.3	7.03	10.03	0.0	125.6	0.097
5/12/2011	49.78	101.6	7.07	10.05	0.0	121.6	0.131
6/7/2011	49.65	101.6	7.02	10.02	0.3	126.1	0.151
7/7/2011	49.77	102.0	7.08	10.04	0.4	125.9	0.081
8/3/2011	49.77	101.7	7.12	10.05	0.0	126.6	0.190
9/2/2011	50.00	99.9	7.02	10.00	-0.1	124.3	0.016

9/22/2011	50.05	103.3	7.07	9.98	0.5	126.5	0.129
10/20/2011	50.00	100.6	7.04	10.06	-1.6	125.9	-0.021
11/16/2011	49.93	102.9	7.05	10.03	0.2	126.3	0.126
12/14/2011	50.10	102.5	6.98	9.97	0.1	126.1	0.231

14) Other remarks/notes -

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

Bayview

PH data marked as rejected at the beginning of new deployments is due to probe/sonde malfunction and is not accurate data. The exact cause has yet to be determined.

The depth data beginning 2/3/11 and ending 4/8/15 is marked suspect. Although the cause is not specifically know it is plausible the shift in depth data is due to the sondes not sitting at the proper depth (they appear to be sitting higher in the deployment tube). This data should be interpreted with caution.

The data from 3/11/11 at 10:00 to 3/15/11 at 13:00 were marked as CWE, CSM because this data was recorded during the time period that the water quality sites including Bayview showed a response in the depth data to the tsunami that occurred in Japan on 3/11/11.

Data beginning 11/23/11 3:30 and ending 11/30/11 11:15 and another set beginning 12/16/11 at 6:15 and ending in late January 2012 show anomalies for dissolved oxygen, salinity, specific conductivity, and pH. These data show unusual trends for winter-time data in Padilla Bay, when plant productivity is low, although a similar anomaly occurred at Ploeg as well. The cause is unknown and the data should be interpreted with care.

Ploeg

PH data marked as rejected at the beginning of new deployments is due to probe/sonde malfunction and is not accurate data. The exact cause has yet to be determined.

Dissolved oxygen data marked GSM, CDA are a normal summer time trend in Padilla Bay. It is believed that the eelgrass community has such a high productivity that it can bring the dissolved oxygen levels down.

The data from 3/11/11 at 10:00 to 3/15/11 at 13:00 were marked as CWE, CSM because this data was recorded during the time period that the water quality sites including Ploeg showed a response in the depth data to the tsunami that occurred in Japan on 3/11/11.

Data beginning 11/28/11 00:45 and ending 12/21/11 14:00 show anomalies for dissolved oxygen, salinity, specific conductivity, and pH. These data show unusual trends for winter-time data in Padilla Bay, when plant productivity is low although a similar anomaly occurred at Bayview as well. The cause is unknown and the data should be interpreted with care.

On 06/30/2025 this dataset was updated to include updated QAQC flags and codes for the Gong Surface surface site at PDB reserve. The GS sonde is a surface sonde that is attached to a floating buoy. The sonde sits in a tube built into the buoy and there is a bolt at the bottom of the tube which sits 1 m below the surface, therefore the sonde's position does not change relative to the buoy. The depth data collected by the sonde reflects the depth the sonde is under the surface of the water. The buoy, and therefore sonde, experiences wave action, unlike the stable platform of the other sites. Any changes in depth are from barometric pressure changes (prior to correction) and wave action. The overall depth at the buoy location changes based on the fluctuation of the tide and ranges from 16 to 21m. The buoy is anchored to the bottom (~ 18 m) with an anchor.

PH data marked as rejected at the beginning of new deployments is due to probe/sonde malfunction and is not accurate data. The exact cause has yet to be determined.

For the deployment beginning 1/11/11 and ending 2/3/11 and the deployment beginning 11/18/11 and ending 12/14/11 the pH data was marked as suspect GSM and CAF. All of the data from this deployment are higher than the previous or following deployments. However, the trends are likely to be real and the difference between the deployments is within the accuracy of the probe (0.2). The cause is unknown.

The data from 3/11/11 at 10:00 to 3/15/11 at 13:00 were marked as CWE, CSM because this data was recorded during the time period that the other Padilla Bay water quality sites showed a response to the tsunami that occurred in Japan on 3/11/11.

Joe Leary Estuary

DO data from the January 1 to January 11 at 17:45 were marked as 1 SSD GSM because the post calibration showed at 6% difference from the expected value and 12 % difference from the first reading of the next deployment. Trends can be analyzed but data should be interpreted with caution.

On 10/18/11 at 5:45 temperature data were marked as suspect, cause unknown because of the temperature drop for that reading. As a result all other parameters for that record were also marked as suspect because they each use temperature in part of their calculation.

For the deployment beginning 3/8/11 at 11:15 and ending 4/7/11 at 09:25 the data were marked as -3 GSM, CWD because the sonde and chain system were hooked up wrong the sonde was out of the water or at the wrong depth for the whole deployment.

The data from 3/11/11 at 10:00 to 3/15/11 at 13:00 were marked as CRE, CSM (as well as -3 GSM, CWD see above) because this data was recorded during the time period that the other Padilla Bay water quality sites showed a response to the tsunami that occurred in Japan on 3/11/11. Even though these data have been rejected a response to the tsunami was also seen in the depth data at Joe Leary Estuary.