Sapelo Island (SAP) NERR Meteorological Metadata January – December 2013 Last Update on March 5, 2019

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons

Dorset Hurley, Research Coordinator, dhurley@darientel.net
Patrick Hagan, Research Assistant, bluewatermotion@hotmail.com

Address:

State of Georgia Natural Resources Dept. 1 Long Tabby Lane Sapelo Island, GA 31327 (912)-485-2251

2) Entry verification

Data are uploaded from the CR1000 data logger to a Personal Computer (IBM compatible). Files are exported from or LoggerNet in a comma-delimited format and uploaded to the CDMO where they undergo automated primary QAQC and become part of the CDMO's online provisional database. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the Reserve where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, append files, and export the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. For more information on QAQC flags and QAQC codes, see Sections 11 and 12. Patrick Hagan is responsible for all data management.

3) Research objectives

The principal objectives are to record meteorological information for the Sapelo Island NERR's site that can be used 1) as a reference for meteorological data for research projects on the reserve, 2) to give meteorological context for our half hourly SWMP water quality data, and other long term environmental monitoring projects at the Reserve, 3) to observe and characterize important events such as storms, heat and cold waves, droughts, and heavy rainfalls, and 4) to detect trends and characterize climate variability over the long-term.

4) Research methods

Campbell Scientific data telemetry equipment was installed at the Marsh Landing station on 02/15/2007 and transmits data to the NOAA GOES satellite, NESDIS ID #3B036592. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at http://cdmo.baruch.sc.edu.

The 15 minute Data are collected in the following formats for the CR1000:

Averages from 5-second data:

Air Temperature (°C), Relative Humidity (%), Barometric Pressure (mb), Wind Speed (m/s), Wind Direction (degrees), Battery Voltage (volts)

Maximum and Minimum Air Temperature (°C) and their times from 5-second data (these data are available from the Reserve)

Maximum Wind Speed (m/s) and time from 5-second data

Wind Direction Standard Deviation (degrees)

Totals:

Precipitation (mm), PAR (millimoles/m²), and Cumulative Precipitation (mm)

Recommended calibration frequency for the MET station sensors:

- Temperature/Humidity- annual recalibration
- Rain Gauge- annual recalibration
- Wind Speed/Direction- annual or every 2 years inspection (depending on the sensor)
- Barometric Pressure- every 2 years recalibration
- PAR- bi-every 2 years recalibration
- CR1000-every 5 years (required beginning 2014, one year initial grace period)

5) Site location and character

The site is located at 31° 25′ 4.08 N, 81° 17′ 43.26 W, about 15 feet above sea level. All sensors are mounted on a 10m-aluminum tower located in the northern corner of the Marsh Landing parking lot on the southwest corner of the island. The parking lot surface is approximately a meter above the surrounding marsh. The heights of the sensors on the tower are as follows:

Temperature and relative humidity	2m
Barometric pressure	1m
PAR	3m
Precipitation gauge	6m
Wind sensor	10m

It is bordered with salt marsh to the north and south with transition into pine forest occurring 1/2 mi to the east. On the immediate west lie the Duplin River and the ferry dock, which is also the location of our lower Duplin and marsh Landing Water Quality sampling sites. The station is well exposed to all winds and weather with little blockage and no shading. This region is subject to multiple severe weather phenomena partially due to the proximity to the ocean. These phenomena include severe summer thunderstorms, which can cause drastic, localized drops in pressure, temperature, and heavy rains; powerful fall and winter frontal systems carrying prolonged strong winds (usually NNE), drastic and sudden drops in temperature and pressure, and long, steady rains; and finally the late summer and early fall hurricanes. It must be noted that due to the remote location and proximity to the ocean our weather patterns can vary greatly from those on the mainland, particularly temperatures which tend to moderate due to our being surrounded by water. The nearest sites for comparison is the Grays Reef NOAA weather Buoy located about 20nm east of Sapelo Island and Glynco airport located approx. 30 mi to the SSE.

6) Data collection period

The data collection period for 2013 runs from Jan 1, 2013 @00:00 to Dec 31, 2013@23:45. Data collection began at this site in September 2002.

7) Distribution

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR weather data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in comma separated format.

8) Associated researchers and projects

The SWMP program in place on Sapelo also includes water quality and nutrient datasets collected along with this meteorological data. Sapelo Island has a long history of maintaining research. In 1953, the University of Georgia Marine Institute (UGAMI) was formed and the island became a working laboratory for many. The research continues today with SAP NERR and UGAMI creating a unique partnership with much of the current research being done facilitated by SAP NERR and UGAMI together. Given UGAMI's long history on Sapelo, a bibliographic list of over 800 articles of current and previous research can be found on the UGAMI website: http://www.uga.edu/ugami and on the Sapelo Island NERR site: http://www.sapelonerr.org.

II. Physical Structure Descriptors

9) Sensor specifications

Parameter: Temperature

Units: Celsius

Sensor type: Platinum resistance temperature detector (PRT) Model #: HC2S3 Temperature and Relative Humidity Probe

Operating Temperature: -40°C to +60°C

Range: -50°C to +100°C

Accuracy: ± 0. °C with standard configuration settings

Date of Last calibration: 5/20/2012

Dates Installed: 10/15/2012 - 08/26/2013

SN: 60780595

Date of Last calibration: 4/06/2013 Dates Installed: 8/26/2013 - 10/8/2014

SN: 61115039

Parameter: Relative Humidity

Units: Percent

Sensor type: HC2S3 Temperature and Relative Humidity Probe

Range: 0-100% non-condensing Accuracy at 23°C: +/- .8% RH

Temperature dependence of RH measurement: +/- 3% (-40 to 60C)

Date of Last calibration: 5/20/2012 Dates Installed: 10/15/2012 - 08/26/2013

SN: 60780595

Date of Last calibration: 4/06/2013 Dates Installed: 8/26/2013 - 10/8/2014

SN: 61115039

Parameter: Barometric Pressure

Units: millibars (mb)

Sensor type: Vaisala Barocap © silicon capacitive pressure sensor

Model #: CS-105

Operating Range: Pressure: 600 to 1060 mb; Temperature: -40°C to +60°C;

Humidity: non-condensing

Accuracy: ± 0.5 mb @ 20° C; ± -2 mb @ 0° C to $\pm 0^{\circ}$ C; ± -4 mb @ $\pm 20^{\circ}$ C to $\pm 5^{\circ}$ C; ± -4

6 mb @ -40°C to 60°C Stability: \pm 0.1 mb per year

Date of Last calibration: 2/24/2012 Dates Installed: 8/6/2012 - 08/26/2013

SN H0870031

Date of Last calibration: 2/4/2013 Dates Installed: 8/26/2013 - 10/08/2014

SN: JO560059

Parameter: wind speed Units: Meters/second (m/s) Sensor type: 12cm dia cup wheel assembly, 40 mm dia hemispherical cups

Model #: R.M. Young 03110-5 Wind Sentry

Range: 0-50m/s (112mph) gust survival; 60m/s (134mph)

Accuracy: +/-2%

Last service: 11/10/2011

Dates Installed: 10/15/2012 - 10/25/2013

SN: unknown

Last service: 8/29/2013 Dates Installed: 10/25/2013

SN: unknown

Parameter: wind direction

Units: degrees

Sensor type: balanced vane 16cm turning radius Model #: R.M. Young 03110-5 Wind Sentry

Range: 360deg Accuracy: +/- 5% Last service: 11/10/2011

Dates Installed: 10/15/2012 - 10/25/2013

SN: unknown

Last service: 8/29/2013

Dates Installed: 10/25/2013 - 10/08/2014

SN: unknown

Parameter: Photosynthetically Active Radiation

LI-COR Quantum Sensor Units: mmoles m-2 (total flux)

Sensor type: High stability silicon photovoltaic detector (blue enhanced)

Model #: LI190SB

Light spectrum waveband: 400 to 700 nm

Temperature dependence: 0.15% per °C maximum

Stability: <±2% change over 1 yr

Operating Temperature: -40°C to 65°C; Humidity: 0 to 100%

Sensitivity: typically 5 µA per 1000 µmoles s-1 m-2

Multiplier: 0.965945 as of 10/15/2012 Date of last calibration: 3/6/2012

Dates Installed: 10/15/2012 - 08/26/2013

SN: Q47437

Multiplier: 1.174205

Date of last calibration: 3/15/2013 Dates Installed: 8/26/2013 - 10/08/2014

SN: Q49457

Parameter: Precipitation (specify if heated rain gauge)

Units: millimeters (mm)

Sensor type: Tipping Bucket Rain Gauge

Model #: TE525 Rainfall per tip: 0.01 inch Operating range: Temperature: 0° to 50°C; Humidity: 0 to 100%

Accuracy: +/- 1.0% up to 1 in./hr; +0, -3% from 1 to 2 in./hr; +0, -5% from 2 to 3

in./hr

Date of Last calibration: 9/26/2013 (previous calibration 02/06/2012 and 10/15/2012)

SN:50994-412

The CR1000 has 2 MB of Flash EEPROM that is used to store the Operating System. Another 128 K Flash is used to store configuration settings. A minimum of 2 MB SRAM is (4 MB optional upgrade) available for program storage (16K), operating system use, and data storage. Additional storage is available by using a compact flash card in the optional CFM100 Compact Flash Module.

Date CR1000 Installed: 6/26/2006

SN: 005203

CR1000 Firmware Version (s): unknown

CR1000 Program Version(s): SAPMLMET_6.0_102613

10) Coded variable definitions

Sampling station: Sampling site code: Station code:

Marsh Landing ML sapmlmet

11) QAQC flag definitions

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is above or below sensor range, or missing. All remaining data are then flagged 0, as passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP supported parameter
- 0 Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Open reserved for later flag
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the CR1000, sensor

errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F_Record column.

General Errors

nciai Liioi	3
GIM	Instrument Malfunction
GIT	Instrument Recording Error, Recovered Telemetry Data
GMC	No Instrument Deployed due to Maintenance/Calibration
GMT	Instrument Maintenance
GPD	Power Down
GPF	Power Failure / Low Battery
GPR	Program Reload
GQR	Data Rejected Due to QA/QC Checks
GSM	See Metadata

Sensor Errors

300	Suspect due to sensor diagnostics
SIC	Incorrect Calibration Constant, Multiplier or Offset
SIW	Incorrect Wiring
SMT	Sensor Maintenance
SNV	Negative Value
SOC	Out of Calibration
SQR	Data rejected due to QAQC checks
SSD	Sensor Drift
SSM	Sensor Malfunction
SSN	Not a Number / Unknown Value
SSR	Sensor Removed

Suspect due to sensor diagnostics

Comments

iiiiiiciits	
CAF	Acceptable Calibration/Accuracy Error of Sensor
CDF	Data Appear to Fit Conditions
CML	Snow melt from previous snowfall event
CRE*	Significant Rain Event
CSM*	See Metadata
CCU	Cause Unknown
CVT*	Possible Vandalism/Tampering
CWE*	Significant weather event

13) Other remarks/notes

Data are missing due to equipment or associated specific sensors not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

Small negative PAR values are within range of the sensor and are due to normal errors in the sensor and the CR1000 Datalogger. The Maximum signal noise error for the Licor sensor is +/- 2.214 mmoles/m2 over a 15 minute interval.

Relative Humidity data greater than 100 are within range of the sensor accuracy of $\pm -3\%$.

Data recorded for all parameters (with the exception of cumulative precipitation) at the midnight timestamp (00:00) are the 15 minute averages and totals for the 23:45-23:59 time period of the previous day. Cumulative precipitation data at the midnight timestamp (00:00) are the sum of raw (unrounded) precipitation data from 00:00 to 23:59 of the previous day. Summing each individual 15-minute total precipitation value from the same period will result in small differences from cumulative precipitation due to rounding. It is especially important to note how data at the midnight timestamp are recorded when using January 1st and December 31st data.

PAR data beginning 10/15/2012 are considered suspect due to sensor drift. There were documented changes in PAR output according to the calibration certificate for the sensor that was replaced on 8/26/2013. The calibration certificate provided by Apogee from its 9/09/2014 calibration (03/06/2012 previous calibration) reported at -10.1% (-4.0% per year) post cal drift for the sensor that was installed from 10/15/2012 to 8/26/2013 (Q47437). Acceptable drift is +/-2% for this sensor. Typically all PAR data 1 year prior to the sensor swap are flagged and coded for drift, but this sensor was installed for less than a year. Data from 10/15/2012 to 08/26/2013 08:30 are flagged and coded as <1> SSD CSM. If the users are comfortable assuming that the drift was linear (in a real world environment it is unlikely to be entirely linear), these data may be 'corrected' for assumed linear drift at the user's discretion using manufacturer's instructions.

Elevated nighttime PAR data were flagged and coded as suspect, <1> CSM when values above 0 were recorded between sunset and sunrise.

Max wind speed data were rejected on the following dates due to QAQC checks, <-3> SQR CSM, 04/14/2013 21:30, 08/17/2013 01:15, 08/20/2013 11:15 and 12/25/2013 18:15. Wind speed data for the same 15 minute readings were not rejected as they appear to be ok and fit conditions.

08/26/2013 08:45 all parameters were missing due to a power down, <-2> GPD CSM, and rejected, <-3> GPR CSM, at 09:00 due to a CR1000 program reload. The station was powered down so that air temperature, relative humidity, barometric pressure, and PAR sensors could be swapped.

Cumulative Precipitation values reset following the program reload on 8/26/2013 09:00. Cumulative precipitation data following the upload were corrected to reflect the 4.8mm of precipitation that occurred before the reload. These data are flagged and coded as corrected, <5> CSM.

All data are rejected, <-3> GMT CSM, 10/25/2013 13:15 - 14:00 due to the tower being lowered for maintenance to replace the wind sensor.