Tijuana River (TJR) National Estuarine Research Reserve Meteorological Metadata

August - December 2012

Latest Update: April 13, 2013

I. Data Set & Research Descriptors

1) Principal investigator(s) & contact persons

Jeff Crooks, Research Coordinator 301 Caspian Way

Imperial Beach, CA 91932 Phone: (619) 575-3613 Fax: (619) 575-6913

E-mail: jcrooks@tijuanaestuary.org

Michelle Cordrey, Research Specialist 301 Caspian Way

Imperial Beach, CA 91932
Phone: (619) 575-3613 x322

Fax: (619) 575-6913

E-mail: mcordrey@tijuanaestuary.org

2) Entry verification

Data are uploaded from the CR1000 datalogger to a personal computer (IBM compatible) using LoggerNet software from Campbell Scientific. Files are exported from LoggerNet in a comma-delimited format and uploaded to the CDMO where they undergo automated primary QAQC and become part of the CDMO's online provisional database. During primary QAQC, data are flagged if they are missing, out of sensor range, or outside 2 or 3 standard deviations from the historical seasonal mean. The edited file is then returned to the Reserve where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, append files, and export the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. For more information on QAQC flags and QAQC codes, see Sections 11 and 12.

3) Research objectives (Campbell Weather Station):

The principal objective is to record long-term and episodic meteorological data for the Tijuana Estuary in order to observe any environmental changes or trends over time. Data are also used as corollary information in ongoing biologic, hydrologic and geographic studies being conducted at the reserve.

4) Research Methods

A model cr1000 Campbell Scientific datalogger samples meteorological sensors every 5 seconds. At 15 minute intervals, averages or instantaneous readings are taken, depending upon sensor type, and written to a storage table on the cr1000.

Monthly, sensors on the weather station are inspected for damage or debris. If any is found, it is repaired and/or cleaned. Sensors are removed and sent back to Campbell Scientific for calibration at minimum of every two years. There were no other analyses done on the meteorological data at present.

Campbell Scientific data telemetry equipment was installed at the Tidal Linkage station on 06/12/2006 and transmits data to the NOAA GOES satellite, NESDIS ID #3B01468A. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteen minute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at http://cdmo.baruch.sc.edu.

Data collection information:

The 15 minute Data are collected in the following formats for the CR1000: Averages from 5-second data:

Air Temperature (°C), Relative Humidity (%), Barometric Pressure (mb), Wind Speed (m/s), Wind Direction (degrees), Battery Voltage (volts) Maximum, Minimum, and their times from 5-second data:

Air Temperature (°C), Wind Speed, (m/s), Wind Direction Standard Deviation (degrees) from 5-second data

Totals:

Precipitation (mm), PAR (millimoles/m2), and Cumulative Precipitation (mm)

5) Site location and character:

The Tijuana River NERR is located on the Southern Pacific Coast, next to the California border with Mexico at a latitude of 32 deg. 34 min. N and Longitude of 117 deg. 07 min. W. The area surrounding the 2,531 acre reserve is heavily developed by residential housing as is the watershed which drains into the estuary. Approximately 2/3 of the watershed is in Mexico and is subject to periodic raw sewage outflows. The North Eastern section of is bordered by a military helicopter training base. Vegetation in the area is dominated by common pickleweed (Spartina virginica) and Pacific cordgrass (Spartina foliosa).

Description of the specific sampling station:

The weather station is located approximately 30m west of the TR NERR Visitor Center at a Latitude of 32deg 34min 28.32sec N and a Longitude of 117deg 07min 37.05sec W. The station is 50m north of the water quality sampling station. The vegetation surrounding the weather station are mainly upland scrub species.

The anemometer, wind direction and Licor sensors are located at the top of a 3.5 meter aluminum tower. The temperature and humidity sensors are located midway up and on the west side of the tower. The Tipping Bucket rain gauge sits on a separate 2 meter high pole located approx. a meter to the west of the main tower. It is above the ground to limit interference from the security fence surrounding the weather station. The sensors were wired to the cr1000 following the protocol in the CDMO Manual.

6) Data collection Period

Data was collected for all parameters at the station from 8/1/2012 08:30 and continued through 10/31/2012 09:15.

7) Distribution

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR weather data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in comma separated format.

8) Associated researchers and projects

The Tijuana River NERR has a water quality station located at the Tidal Linkage. The principal objective of this study is to record long-term water quality data for the Tijuana Estuary in order to observe any physical changes or trends in water quality both spatially and over time. Additionally, NERR SWMP tier 1 nutrient monitoring is being conducted at the Tidal Linkage station. Dr. Eric Terrell at Scripps Institute of Oceanography has been utilizing the meteorological data as ancillary data for a met station they have located on the Imperial Beach pier.

II. Physical Structure Descriptors

9) Sensor specifications

Parameter: LI-COR Quantum Sensor Units: mmoles m-2 (total flux)

Sensor type: High stability silicon photovoltaic detector (blue enhanced)

Model#: LI190SA Serial#: q40041

Light spectrum waveband: 400 to 700 nm Temperature dependence: 0.15% per °C maximum

Stability: <±2% change over 1 yr

Operating Temperature: -40°C to 65°C; Humidity: 0 to 100%

Sensitivity: typically 5 μA per 1000 μmoles s-1 m-2

Multiplier: 1.258

Date installed: December 16 2008

Date of last calibration: July, 2008

Dates in service: 01/01/2012 - 12/31/2012

Parameter: Wind speed

Units: meter per second (m/s) Sensor type: 18 cm diameter 4-blade helicoids propeller molded of polypropylene Model#: R.M. Young 05103-5 Wind Monitor Range: 0-60 m/s (130 mph); gust survival 100 m/s (220 mph) Accuracy: +/- 2% Date of last factory calibration: September, 2010 Field calibration done 10/16/2012 in-situ using calibrated unit for comparison and found to be within specifications Dates in service: 01/01/2012 - 12/31/2012 Parameter: Wind direction Units: degrees Sensor type: balanced vane, 38 cm turning radius Model#: R.M. Young 05103-5 Wind Monitor Range: 360° mechanical, 355° electrical (5° open) Accuracy: +/- 5% Date of last factory calibration: September, 2010 Field calibration done 10/16/2012 in-situ using calibrated unit for comparison and found to be within specifications Dates in service: 01/01/2012 - 12/31/2012 Parameter: Temperature and Relative Humidity Model#: HMP45AC Serial#: Y4410095 Operating Temperature: $-40 \text{ to } +60\,^{\circ}\text{C}$ Temperature Measurement Range: -40 to +60°C Temperature Accuracy: ± 0.2 °C (20°C) Relative Humidity Measurement Range: 0-100% non-condensing RH Accuracy: +/-2% RH (0-90%) and +/-3%(90-100%)Date of last calibration: July, 2008 Dates in service: 01/01/2012 - 12/31/2012 Parameter: Barometric Pressure Model#: PTB101B Serial#: p4830023 Operating Temperature: -40 to +60C Pressure Measurement Range: 600-1060 mb Humidity: non-condensing Accuracy: ± 0.5 to 6.0 mb (+20-60C) Stability: ± 0.1 mb per year Date of Last calibration: April, 2011 Dates in service: 01/01/2012 - 12/31/2012 Parameter: Precipitation Units: millimeters (mm) Sensor type: Tipping Bucket Rain Gauge Model#: TE525 Rainfall per tip: 0.01 inch

Date of last calibration: Oct 16, 2012 Dates in service: 01/01/2012 - 12/31/2012

Operating range: Temperature: 0° to +/- 50° C; Humidity: 0 to 100%

Accuracy: +/- 1.0% up to 1 in./hr; +0, -3% from 1 to 2 in./hr; +0, -5% from 2

Datalogger: Model: CR1000

to 3 in./hr

Specs: The CR1000 has two MB Flash EEPROM that is used to store the Operating System. Another 128 K Flash is used to store configuration settings. A minimum of 2 MB SRAM is (4 MB optional) is available for program storage (16K), operating system use, and data storage. Additional storage is available by using a compact flash card in the optional CFM100 Compact Flash Module. Dates in service: 7/12/2006 - 12/31/2012

10) Coded variable definitions

Sampling station: Sampling site code: Station code: Tidal Linkage TL tjrtlmet

11) QAQC flag definitions

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_{-}). During primary automated QAQC (performed by the CDMO), -5, -4, -2, 2, and 3 flags are applied automatically to indicate data that is above or below sensor range, missing, or outside 2 or 3 standard deviations from the historical seasonal mean. All remaining data are then flagged 0, as "good". During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Open reserved for later flag
- 0 Good Data
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Open reserved for later flag
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point.

General Errors

- GIM Instrument Malfunction
- GIT Instrument Recording Error, Recovered Telemetry Data
- GMC No Instrument Deployed due to Maintenance/Calibration
- GMT Instrument Maintenance
- GPD Power Down
- GPF Power Failure / Low Battery
- GPR Program Reload
- GQR Data Rejected Due to QA/QC Checks
- GSM See Metadata

Sensor Errors

SIC Incorrect Calibration Constant, Multiplier or Offset

```
SNV Negative Value
```

- SOC Out of Calibration
- SSN Not a Number / Unknown Value
- SSM Sensor Malfunction
- SSR Sensor Removed

Comments

- CAF Acceptable Calibration/Accuracy Error of Sensor
- CDF Data Appear to Fit Conditions
- CRE Significant Rain Event
- CSM See Metadata
- CVT Possible Vandalism/Tampering

13) Other remarks / notes

Data are missing due to equipment or associated specific sensors not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

Small negative PAR values are within range of the sensor and are due to normal errors in the sensor and the CR1000 Datalogger. The Maximum signal noise error for the Licor sensor is ± -2.214 mmoles/m2 over a 15 minute interval.

Relative Humidity data greater than 100 are within range of the sensor accuracy of ± -3 . A number of readings during the sampling exceeded by ± 1 % this specification. The causes for this are being investigated.

Cumulative precipitation data are recorded from 00:00 to 23:59 with the daily total recorded at the midnight mark (00:00). The midnight CumPrcp value is actually the total from the previous day.

All periods where sensor values deviated noticeably from the rest of the data set, e.g. periods of high or low temperature, low barometric pressure etc., were evaluated against data from nearby weather stations (Ream Field NALF and Imperial Beach pier) and also compared to local daily analog measurements where available. All such periods were found to be comparable with the ancillary data.

From 09/16/2012 03:15 to 10/02/2012 00:45 Total PAR values during nighttime hours ranged lower than factory spec for the senor. Possible water intrusion into the unit is suspected.

On 02/02/2012 17:15 - 17:45, the firmware of the Campbell cr1000 datalogger was upgraded from version 18 to 21.