Tijuana River Estuary (TJR) NERR Nutrient Metadata January-December 2007

Latest Update: November 15, 2011

I. Data Set and Research Descriptors

1) Principal Investigators and Contact Persons

a) Reserve Contact

Dr. Jeff Crooks - Research Coordinator 301 Caspian Way Imperial Beach, CA 91932 Phone: (619) 575 3614 e-mail: jcrooks@tijuanaestuary.com

Clay Phillips – Reserve manager 301 Caspian Way Imperial Beach CA 91932 Phone: (619) 575 3614 e-mail: cphillips@parks.ca.gov

Michael Kiener – Research Specialist 301 Caspian Way Imperial Beach CA 91932 Phone: (619) 575 3614 e-mail: makiener@yahoo.com

b) Laboratory Contact

Nutrient analysis is preformed in house.

Michael Kiener 301 Caspian Way Imperial Beach CA 91932 Phone: (619) 575 3614 e-mail: makiener@yahoo.com

e-man. makiener@yanoo.com

c) Other Contacts and Programs

None

2) Research Objectives

The Tijuana Estuarine Research Reserve (TERR) is impacted heavily by both periodic raw sewage inputs and urban development. Only about a quarter of the reserve's 2,531 acres are tidally influenced. The nutrient monitoring program will provide baseline inorganic nutrient and Chl a data for TERR. This data will also contribute to national baseline information. Nutrients were sampled at four existing YSI water quality sonde locations. The Oneonta Slough (OS) site is located in the largest and deepest channel in the estuary. The Model Marsh (MM) site is located in a natural channel adjacent to a 20 acre mudflat restoration area. The Tidal Linkage (TL) site is located in a restored channel connecting mudflats to the north arm of the estuary. The Boca Rio (BR) site is located in a large channel running north to south and approximately 300m north of the Tijuana River mouth. These sampling sites are located throughout estuary to provide insight into the possible sources of nutrients. The OS and TL sites are predominantly influenced by the US communities. The BR and MM sites are influenced by both activity in Mexico and the US. All sites are tidally influenced.

a) Monthly Grab:

Grab samples were collected monthly at all four YSI water quality sonde sites. Monthly grab sampling provides insight into the varying nutrient concentrations within the estuary. This sampling method provides information as to the spatial differences in nutrient levels within the system. The placement of these sites also offers the opportunity to better isolate the possible origin of nutrient inputs as well as the degree of tidal flushing.

b) Diel Sampling Program:

Diel samples were collected monthly at one site. This sampling method provides a temporal perspective of nutrient flux over one tidal cycle at one given site. Given the location of the site, the diel sampling also provides valuable information as to the degree of tidal flushing of nutrients from the estuary.

3) Research Methods

a) Monthly Grab Sampling Program

Monthly grab samples were taken at the four YSI sites (Oneonta Slough, Model Marsh, Tidal Linkage and Boca Rio). All samples were collected less than three hours prior to the projected slack low tide ending a diel sampling cycle. Samples were collected vertically, by hand, in amber wide mouth 1 L acid washed (10% HCl) Nalgene bottles. Sample bottles were rinsed three times with ambient water before sampling. Sampling followed a dry period of 72 hours or greater. Samples were taken sequentially, within five minutes of each other. Samples were taken at the depth of and adjacent to the sonde probes in compliance with the NERRS Nutrient and Chlorophyll Monitoring SOP version 1.3 grab sampling protocol scenario one. Field replicates (N=2) were collected at all 4 sites for the months of January and February. Beginning in March 2007, 3 field replicates (N=3) were collected at the Boca Rio site with single grab samples collected at the other three sites. All samples were immediately stored on ice and delivered to the lab within four hours.

At the time of nutrient sampling, in-situ measurments of temperature, salinity and dissolved oxygen were taken using an YSI 85 meter. These data are not included in this dataset but can be obtained by contacting the reserve.

b) Diel Sampling

Diel samples were collected at the Boca Rio site. Samples were taken at intervals less than 2.5 hours for a total of 12 samples over one lunar day. Samples were collected using an ISCO model 6712 autosampler with a sixty foot sample tube and polypropylene strainer. The strainer was suspended in minnow trap (approximately 15 cm above the channel bottom) between the bank and sonde probe at a depth equel to the sonde probes. The sampler was located approximately 1.5 vertical meters above the strainer. The autosampler was programmed to collect 1 liter per sample utilizing ISCO's 24-bottle kit in a standard tub stocked with ice. At the time of retrieval, the sampling program was suspended, the sample bottles were capped and the ice reservoir was refilled. Samples typically reached the lab within one hour of retrieval.

All sample containers were acid washed. The washing procedure consisted of six rinses with DI water, a soak of at least twenty minutes in 10% HCl and six rinses with Type I reagent water (18 Mohm/cm or greater).

4) Site Location and Character

General Site Characteristics (TJE)

- a) Tidal exchange (extremes): approx. -2 +7 MLLW,
- b) Salinity: 4 ppt (extreme rain events) to 38 psu
- c) Latitude and longitude: 32 deg 34 min N, 117 deg 07 min W
- d) Potential impacts: storm drain runoff from military airfield and adjacent residential areas, occasional sewage spills (10-15 MGD) into the Tijuana River from Mexico. The area surrounding the estuary is heavily developed with residential housing as is the watershed which drains into the estuary.

Approximately 2/3 of the watershed is in Mexico. The North Eastern section of the reserve is bordered by a military helicopter training base. Vegetation in the area is dominated by common pickleweed (Salicornia virginica) and Pacific cordgrass (Spartina foliosa).

- e) Size: 4532 km²
- f) There is no in house flow monitoring program. However, some data can be found at www.sdcoos.sdsu.edu. It should be noted that this is only offered as a possible source of data and not an endorsement of the data or its quality.

Specific Site Characteristics

Oneonta Slough (OS)

- a) Orientation of site: The Datalogger station is located on the upper portion of Oneonta Slough approximately 1km from mouth. The channel runs North to South and is located on the northwestern edge of the reserve. Latitude is 32 deg 34 min 04.8 sec N, longitude is 117 deg 07 min 52.3 sec W. Channel width is approximately 20 meters.
- b) Tidal range: 1.8 m
- c) Salinity range: 37 psu
- d) Freshwater input is predominately urban runoff, from the US, during rain events. No flow data is available.
- e) Channel bottom elevation: directly below the datalogger, is approx. 0.55m below Mean Sea Level.
- f) Bottom type: Sand and sediment.
- g) Pollutants are those associated with urban runoff from the US, agricultural runoff and sewage spills. No specific data is available as to type or quantity.

Model Marsh (MM)

- a) Orientation of site: The datalogger station is located in the middle of a natural channel which runs north to south. The channel is approximately 20 meters north of a 20 acre mudflat restoration area in the southern section or the reserve. Latitude is 32 deg 32 min 52.5 sec N, longitude is 117 deg 07 min 22.9 sec W. Channel width is approximately 5 meters.
- b) Tidal range: 1.9 m
- c) Salinity range: 43 psu
- d) Freshwater input is predominately urban runoff from Mexico during rain events. No flow data is available.
- e) Channel bottom elevation: -.39 NGVD (last reading: 2001).
- f) Bottom type: Mostly mud with some sand.
- g) Pollutants are those associated with urban runoff from Mexico, agricultural runoff and sewage spills. No specific data is available as to type or quantity.

Tidal Linkage (TL)

- a) Orientation of site: Datalogger station is located in the middle of the constructed channel known as the Tidal Linkage. The channel runs Northwest to Southwest and is located adjacent to the visitor's center in the northeastern section of the reserve. Latitude is 32 deg 34 min 27.9 sec N, longitude is 117 deg 07 min 37.8 sec W. Channel width is approximately 5 meters.
- b) Tidal range: 0.2 to 1.6 meters above channel bottom
- c) Salinity range: 35 psu
- d) Freshwater input is predominately urban runoff, from the US, during rain events. No flow data is available
- e) Bottom type: Very fine mud.
- f) Pollutants are those associated with urban runoff from the US, agricultural runoff and sewage spills. No specific data is available as to type or quantity.

Boca Rio (BR)

a) Orientation of site: Datalogger station is located approximately 300 meters north of the Tijuana River mouth in the middle of a channel running north to south. Latitude is 32 deg 33 min 34.3 sec N, longitude is 117 deg 06 min 43.7 sec W. Channel width is approximately 20 meters.

- b) Tidal range: 0.5 to 2.14 meters above channel bottom
- c) Salinity Range: 35 psu
- d) Fresh water input is predominately urban runoff, from the US and Mexico, during ran events.
- e) Bottom type: Predominately sand with little mud.
- f) Pollutants are those associated with urban runoff from the US and Mexico, agricultural runoff and sewage spills. No specific data is available as to type or quantity.

5) Code Variable Definitions

Station code names:

Model Marsh = tjrmmnut (Tijuana River Reserve Model Marsh Nutrient data) Tidal Linkage = tjrtlnut Boca Rio = tjrbrnut Oneonta Slough = tjrosnut

Monitoring program codes:

monthly grab sample program = 1 diel grab sample program = 2

6) Data Collection Period

Sampling was performed on a monthly basis attempting to sample at approximately 30 day intervals. Samples collected at all sites other than Boca Rio were grab samplings and so represent a point in time rather than a period. Sampling at Boca Rio began with the first of the ISCO samples at the projected slack low tide and ended with the grab sample at Boca Rio. Whenever possible, grab sampling at BR coincided with the last ISCO sampling. Sampling began on 18 January 2007 at 15:00 p.s.t. and ended on 5 December 2007 at 13:00 p.s.t.

Grab Sampling (all times PST)

Site	Start Date	Start Time	End Date	End Time
MM	01/19/2007	00:00	01/19/2007	00:00
MM	02/09/2007	08:06	02/09/2007	08:09
MM	03/02/2007	13:00	03/02/2007	13:00
MM	04/05/2007	12:55	04/05/2007	12:55
MM	05/10/2007	09:50	05/10/2007	09:50
MM	06/08/2007	08:14	06/08/2007	08:14
MM	07/14/2007	01:15	07/14/2007	01:15
MM	08/10/2007	11:30	08/10/2007	11:30
MM	09/07/2007	10:15	09/07/2007	10:15
MM	10/11/2007	14:15	10/11/2007	14:15
MM	11/08/2007	11:45	11/08/2007	11:45
MM	12/06/2007	00:00	12/06/2007	00:00
Site	Start Date	Start Time	End Date	End Time
Site BR	Start Date 01/19/2006	Start Time 00:00	End Date 01/19/2006	End Time 00:00
BR	01/19/2006	00:00	01/19/2006	00:00
BR BR	01/19/2006 02/09/2007	00:00 07:15	01/19/2006 02/09/2007 03/02/2007 04/05/2007	00:00 07:17
BR BR BR	01/19/2006 02/09/2007 03/02/2007	00:00 07:15 13:30	01/19/2006 02/09/2007 03/02/2007	00:00 07:17 13:35
BR BR BR BR	01/19/2006 02/09/2007 03/02/2007 04/05/2007	00:00 07:15 13:30 14:00	01/19/2006 02/09/2007 03/02/2007 04/05/2007	00:00 07:17 13:35 14:04
BR BR BR BR	01/19/2006 02/09/2007 03/02/2007 04/05/2007 05/10/2007	00:00 07:15 13:30 14:00 10:30	01/19/2006 02/09/2007 03/02/2007 04/05/2007 05/10/2007	00:00 07:17 13:35 14:04 10:35
BR BR BR BR BR	01/19/2006 02/09/2007 03/02/2007 04/05/2007 05/10/2007 06/08/2007	00:00 07:15 13:30 14:00 10:30 08:55	01/19/2006 02/09/2007 03/02/2007 04/05/2007 05/10/2007 06/08/2007	00:00 07:17 13:35 14:04 10:35 08:59
BR BR BR BR BR BR BR	01/19/2006 02/09/2007 03/02/2007 04/05/2007 05/10/2007 06/08/2007 07/14/2007	00:00 07:15 13:30 14:00 10:30 08:55 02:30	01/19/2006 02/09/2007 03/02/2007 04/05/2007 05/10/2007 06/08/2007 07/14/2007	00:00 07:17 13:35 14:04 10:35 08:59 02:34

BR BR	10/11/2007 11/08/2007	13:15 13:40	10/11/2007 11/08/2007	13:19 13:44
BR	12/06/2007	00:00	12/06/2007	00:00
Site	Start Date	Start Time	End Date	End Time
TL	01/19/2006	00:00	01/19/2006	00:00
TL	02/09/2007	06:43	02/09/2007	06:45
TL	03/02/2007	11:55	03/02/2007	11:55
TL	04/05/2007	14:35	04/05/2007	14:35
TL	05/10/2007	09:15	05/10/2007	09:15
TL	06/08/2007	07:25	06/08/2007	07:25
TL	07/14/2007	03:15	07/14/2007	03:15
TL	08/10/2007	10:15	08/10/2007	10:15
TL	09/07/2007	10:45	09/07/2007	10:45
TL	10/11/2007	12:30	10/11/2007	12:30
TL	11/08/2007	12:40	11/08/2007	12:40
TL	12/06/2007	00:00	12/06/2007	00:00
Site	Start Date	Start Time	End Date	End Time
OS	01/19/2006	00:00	01/19/2006	00:00
OS	02/09/2007	08:00	02/09/2007	08:02
OS	03/02/2007	14:10	03/02/2007	14:10
OS	04/05/2007	14:20	04/05/2007	14:20
OS	05/10/2007	08:50	05/10/2007	08:50
OS	06/08/2007	08:45	06/08/2007	08:45
OS	07/14/2007	02:00	07/14/2007	02:00
OS	08/10/2007	10:30	08/10/2007	10:30
OS	09/07/2007	09:30	09/07/2007	09:30
OS	10/11/2007	13:45	10/11/2007	13:45
OS	11/08/2007	12:19	11/08/2007	12:19
OS	12/06/2007	00:00	12/06/2007	00:00

Diel Sampling

Site	Start Date	Start Time	End Date	End Time
OS	01/18/2007	15:00	01/19/2007	15:45
OS	02/08/2007	11:50	02/09/2007	12:35
OS	03/01/2007	12:15	03/02/2007	12:30
OS	04/04/2007	07:05	04/05/2007	08:35
OS	05/09/2007	09:20	05/10/2007	10:05
OS	06/07/2007	06:45	06/08/2007	07:30
OS	NO ISCO SAME	LES COLLECTE	ED IN JULY	
OS	08/09/2007	10:00	08/10/2007	10:45
OS	09/06/2007	12:21	09/07/2007	13:05
OS	10/10/2007	11:30	10/11/2007	14:30
OS	11/07/2007	12:35	11/08/2007	13:20
OS	12/05/2007	13:00	12/06/2007	13:45

Note: Time code is based on a 2400 hour clock and refers to Pacific Standard Time. Date format is mm/dd/yyyy.

7) Associated Researchers and Projects

NERR SWMP water quality datalogger stations are present at the four of the nutrient sampling sites (MM, TL, OS & BR). NERR SWMP meteorological sampling is being conducted at 1 station which is located near the Tidal Linkage water quality station.

Within the watershed, above the River Channel site, nutrient sampling and flow studies are being conducted by Dr. Richard Gersberg of the San Diego State University Department of Public Health. The Model Marsh is the ongoing site of research being conducted by PERL which focuses on methods for increasing the success of saltmarsh revegetation projects.

8) Distribution

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. Manuscripts resulting from the NOAA/OCRM supported research that are produced for publication in open literature, including referred scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see section 1. Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under general information link on CDMO homepage) and online at the CDMO homepage http://cdmo.baruch.sc.edu/. Data are available in text tab-delimited format.

II. Physical Structure Descriptors

9) Entry Verification

Nutrient data are entered into a Microsoft Excel worksheet and processed using the NutrientQAQC Excel macro. The NutrientQAQC macro sets up the data worksheet, metadata worksheets, and MDL worksheet; facilitates data entry; allows the user to set the number of significant figures to be reported for each parameter and rounds using banker's rounding rules; allows the user to input MDL values and automatically flags and codes values below MDL; calculates parameters chosen by the user and automatically flags for component values below MDL and negative values; allows the user to apply QAQC flags and codes to the data; graphs selected parameters for review; append files; and export the resulting data files to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. Michael Kiener was responsible for all data management tasks.

10) Parameter Titles and Variable Names by Data Category

Required NOAA/NERRS System-wide Monitoring Program water quality parameters are denoted by an asterisks "*".

Data Category	Parameter	Variable Name	Units of Measure
a) Phosphorus	*Orthophosphate	PO4F	mg/L as P
b) Nitrogen	*Nirite+Nitrate, filtered *Ammonium, filtered Dissolved Inorganic Nitrogen	NO23F NH4F DIN	mg/L as N mg/L as N mg/L as N
c) Plant Pigments	*Chlorophyll a,	CHLA_N	μg/L

Notes:

- 1. Time is coded based on a 2400 clock and is referenced to Standard Time.
- 2. Reserves have the option of measuring either NO2 and NO3 or they may substitute NO23 for individual analyses if they can show that NO2 is a minor component relative to NO3. NO2 levels are predominately low at TJR Reserve and analysis was discontinued as a result.

11) Measured and Calculated Laboratory Parameter

a) Parameters Measured Directly

Nitrogen species: NO23F, NH4F

Phosphorus species: PO4F Chlorophyll a CHLA_N

b) Calculated Variables

DIN: NO23F+NH4F

12) Limit of Detection

Method detection limit as defined in the Code of Federal Regulations, 40 CFR 136, Appendix B, as:

"the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte."

Method Detection Limits (MDL) for measured water quality parameters.

<u>Parameter</u>	Start Date	End Date	<u>MDL</u>
NH4	1/1/2007	12/31/2007	0.003mg/L as N
NO23	1/1/2007	12/31/2007	0.004mg/L as N
PO4F	1/1/2007	12/31/2007	0.003mg/L as N
CHLA_N	1/1/2007	12/31/2007	0.4 ug/L

MDL's are determined by multiplying the standard deviation by the t value for the number of samples run.

13) Laboratory Methods

a) Parameter: PO4F

Method Reference: Method 4500-P F (1995), Standard Methods for the

Examination of Water and Wastewater 19th ed.

Method Descriptor: The orthophosphate ion (PO₄³⁻) reacts with ammonium

molybdate and antimony potassium tartrate under acidic conditions to form a complex. This complex is reduced with ascorbic acid to form a blue complex which absorbs light at 880 nm. The absorbance is proportional to the concentration

of orthophosphate in the sample.

Preservation Method: Filtered with 47mm membrane filter with pore size .47um and

stored at or below -10° C for no more than 48 hours.

b) Parameter: NH4F

Method Descriptor:

Method Reference: Method 4500-NH₃ F (1995), Standard Methods for the

Examination of Water and Wastewater 19th ed. EPA-600/4-79-020, Revised March 1983, Method

350.1USEPA, 40 CRF, Part 36 Table 1B, footnote 6, 1994. This method is based on the Berthelot reaction. Ammonia

reacts with alkaline phenol, then with sodium hypochlorite to

form indophenol blue. Sodium nitroprusside

(nitroferricyanide) is added to enhanced sensitivity. The absorbance of the reaction product is measured at 630 nm, and is directly proportional to the original ammonia concentration

in the sample.

Preservation Method: Filtered through 47mm membrane filter with 0.47um pore size

and store at or below -20° C for less than 72 hours.

b) Parameter: NO23F

Method Reference: Method 4500-NO₃⁻ E (1995), Standard Methods for the

Examination of Water and Wastewater 19th ed.

USEPA, Methods for Chemical Analysis of Water and

Wastes, Method 353.2.

Methods of Determination of Inorganic Substances in Water and Fluvial Sediments. Book 5. Chapter A1. U.S. Dept. of the

Interior. U.S. Geological Survey.

Method Descriptor: Nitrate is quantitatively reduced to nitrite by passing of the

sample through a copperized cadmium column. The nitrite is determined by diazotizing with sulfanilamide followed by

coupling with N-(1-naphthyl)ethylenediamine

dihydrochloride. The resulting water soluble dye has a

magenta color which is read at 520 nm.

Preservation Method: Filtered through 47mm membrane filter with 0.47um pore size

and stored at or below -20° C for less than 21 days.

c) Parameter: CHLA

Method Reference: Method 10200 H. Chlorophyll, Spectrophotometric

Determinations of Chlorophyll. (1995), Standard Methods for

the Examination of Water and Wastewater 19th ed.

USEPA, In Vitro Determination of Chlorophylls a, b, c1 +c2 and pheopigments in Marine and Freshwater Algae by Visible

Spectophotometry.

Method Descriptor: Samples are filtered through 47 mm A/E glass fiber filters.

Chlorophyll is extracted with aqueous acetone and chl a concentrations are determined with a spectrophotometer.

Preservation Method: Filtered through 47mm A/E filter, stored in a desiccator, at or

below –20° C for less than 30 days.

14) Field and Laboratory QAQC programs

a) Precision

- i) **Field Variability**: For January and February, all grab samples were duplicated. Replicate (N=2) samples are collected sequentially. Beginning in March triplicates (N=3) were collected at one of the 4 sampling sites.
- ii) **Laboratory Variability**: A minimum of 10% of all samples are replicated (N=2).
- iii) Inter-organizational splits: NONE

b) Accuracy

- i) **Sample Spikes**: A minimum of 10% of all samples are spiked, in duplicate. Percent recovery must range between 95% and 105% to be considered under control.
- ii) Standard Reference Material Analysis:

NO23 0.231 mg/L

NO2 0.029 mg/L

PO4 Insufficient sample volume for analysis

iii) Cross Calibration Exercise: NONE

15) QAQC flag definitions

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). QAQC flags are applied to the nutrient data during secondary QAQC to indicate data that are out of sensor range low (-4), rejected due to QAQC checks (-3), missing (-2), optional and were not collected (-1), suspect (1), and that have been corrected (5). All remaining data are flagged as having passed initial QAQC checks (0) when the data are uploaded and assimilated into the CDMO ODIS as provisional plus data. The historical data flag (4) is used to indicate data that were submitted to the CDMO prior to the initiation of secondary QAQC flags and codes (and the use of the automated primary QAQC system for WQ and MET data). This flag is only present in historical data that are exported from the CDMO ODIS.

- -4 Outside Low Sensor Range*
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

*The -4 Outside Low Sensor Range flag was added to the 2007 dataset in August of 2011. See the Other Remarks section for more details.

16) **QAQC** code definitions

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the sample or sample collection, sensor errors document common sensor or parameter specific problems, and

comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point. However, a record flag column (F_Record) in the nutrient data allows multiple comment codes to be applied to the entire data record.

General errors

GCM	Calculated value could not be determined due to missing data
GCR	Calculated value could not be determined due to rejected data

GDM Data missing or sample never collected GQD Data rejected due to QA/QC checks GQS Data rejected due to QA/QC checks

Sensor errors

SBL	Value below minimum limit of method detection
SCB	Value calculated with a value that is below the MDL

SCC Calculation with this component resulted in a negative value

SNV Calculated value is negative

SRD Replicate values differ substantially

SUL Value above upper limit of method detection

Parameter Comments

CAB Algal bloom

CDR Sample diluted and rerun

CHB Sample held beyond specified holding time

CIP Ice present in sample vicinity
CIF Flotsam present in sample vicinity

CLE Sample collected later/earlier than scheduled

CRE Significant rain event

CSM See metadata

CUS Lab analysis from unpreserved sample

Record comments

CAB Algal bloom

CHB Sample held beyond specified holding time

CIP Ice present in sample vicinity
CIF Flotsam present in sample vicinity

CLE Sample collected later/earlier than scheduled

CRE Significant rain event

CSM See metadata

CUS Lab analysis from unpreserved sample

Cloud cover

CCL clear (0-10%)

CSP scattered to partly cloudy (10-50%)

CPB partly to broken (50-90%)

COC overcast (>90%)

CFY foggy

CHY hazy

CCC cloud (no percentage)

Precipitation

PNP none
PDR drizzle
PLR light rain
PHR heavy rain

PSQ squally

PFQ frozen precipitation (sleet/snow/freezing rain)

PSR mixed rain and snow

Tide stage

TSE ebb tide TSF flood tide TSH high tide TSL low tide

Wave height

WH0 0 to <0.1 meters
WH1 0.1 to 0.3 meters
WH2 0.3 to 0.6 meters
WH3 0.6 to > 1.0 meters
WH4 1.0 to 1.3 meters
WH5 1.3 or greater meters

Wind direction

N from the north

NNE from the north northeast NE from the northeast ENE from the east northeast

E from the east

ESE from the east southeast SE from the southeast SSE from the south southeast

S from the south

SSW from the south southwest

SW from the southwest

WSW from the west southwest

W from the west

WNW from the west northwest NW from the northwest NNW from the north northwest

Wind speed

WS0 0 to 1 knot WS1 > 1 to 10 knots WS2 > 10 to 20 knots WS3 > 20 to 30 knots WS4 > 30 to 40 knots WS5 > 40 knots

16) Other Remarks

Data may be missing due to problems with sample collection or processing. Laboratories in the NERRS System submit data that are censored at a lower detection rate limit, called the Method Detection Limit or MDL. MDLs for specific parameters are listed in the Laboratory Methods and Detection Limits Section (Section II, Part 12) of this document. Concentrations that are less than this limit are censored with the use of a QAQC flag and code, and the reported value is the method detection limit itself rather than a measured value. For example, if the measured concentration of NO23F was 0.0005 mg/l as N (MDL=0.0008), the reported value would be 0.0008 and would be flagged as out of sensor range low (-4) and coded SBL. In addition, if any of the components used to calculate a variable are below the MDL, the calculated variable is removed and flagged/coded -4 SCB.

If a calculated value is negative, it is rejected and all measured components are marked suspect. If additional information on MDL's or missing, suspect, or rejected data is needed, contact the Research Coordinator at the Reserve submitting the data.

Note: The way below MDL values are handled in the NERRS SWMP dataset was changed in November of 2011. Previously, below MDL data from 2007-2010 were also flagged/coded, but either reported as the measured value or a blank cell. Any 2007-2011 nutrient/pigment data downloaded from the CDMO prior to November of 2011 will reflect this difference.

*The 2007 dataset was updated on August of 2011 to include the -4 Outside Low Sensor Range flag. The 2007 data published prior to that time used the -3 Rejected data flag with the SBL and SCB QAQC codes to indicate that data were below the minimum detection limit. These flag code combinations were all replaced with the -4 SBL or SCB update as mandated by the Data Management Committee.

- a) No samples were collected within 72 hours of a rainfall event.
- b) Sample times were not recorded for January and December grab samples