Tijuana River (TJR) NERR Nutrient Metadata

January-December 2015

Latest Update: December 1, 2017

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons

Jeff Crooks, Research Coordinator 301 Caspian Way

> Imperial Beach, CA 91932 Phone: (619) 575-3613 Fax: (619) 575-6913 jcrooks@tijuanaestuary.org

Justin McCullough, Research Associate 301 Caspian Way

> Imperial Beach, CA 91932 Phone: (619) 575-3613 x321 imccullough@trnerr.org

Laboratory contacts:

Scripps Institution of Oceanography, Susan M. Becker, Laboratory Manager June – December 2015 samples

University of California, San Diego

9500 Gilman Dr. #0236 La Jolla, CA 92093 chemists@sts.ucsd.edu

(Former) Holly Bellringer 301 Caspian Way

January – May 2015 samples were processed in house Imperial Beach CA 91932

Phone: (619) 575 3613

2) Research Objectives

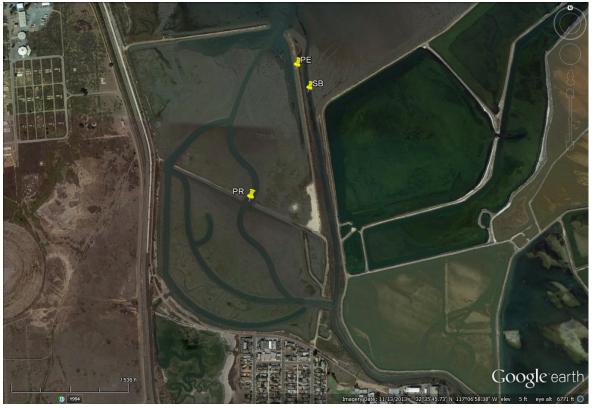
The Tijuana River National Estuarine Research Reserve (TRNERR) is heavily impacted by periodic raw sewage outflows and urban development. About a quarter of the reserve's 2,531 acres are tidally influenced and few channels are deep enough for datalogger deployment. Two stations were originally set up: a treatment station (RC) was set up close to the river mouth on the southern end of the Oneonta Slough, while a control station (OS) was set up on the northern end of Oneonta Slough. The treatment station location was chosen because it would be the site most affected by sewage outflow. Deployment at the treatment station, however, was continually halted by both shifting sediment and massive wracks of kelp (Macrocystis pyrifera), which would often bury the deployment set-up on incoming tides. After a number of different deployment equipment designs were implemented, without success, logging at this site was terminated in 2004.

Currently, there are two YSI datalogger stations installed at the TRNERR and two datalogger stations are located off the reserve. Station locations are designed to investigate spatial gradients of water quality parameters across the reserve, as well as document the water quality changes over time to areas in the reserve that have been restored to increase tidal flushing. The original

control station (OS) in the northern end of Oneonta Slough is still in place. Another station was located at the inlet to the Model Marsh (MM), a constructed 20-acre restoration site in the southern arm of the estuary. The Model Marsh was opened to tidal flushing in February 2000 and data logging at the station began in October 2000. The site was discontinued in January 2008 due to heavy sedimentation. The second active datalogger site, Boca Rio (BR), was established in December 2004 and is located near the mouth of the Tijuana River. This station replaces the River Channel station (RC), which was established in August 2002 to monitor the Tijuana River, the largest source of freshwater to the reserve.

The South Bay (SB) datalogger was established in January 2008 and is located at the mouth of Otay River, which flows into South San Diego Bay. The fourth sonde location, Pond Eleven (PE), was a non-tidal salt pond adjacent to the South Bay logger. A flood gate was the only source of water into the pond. The Pond Eleven sonde was deployed from July 2008 to September 2010. The US Fish and Wildlife Service began restoration of this area, including Pond Eleven, from September 2010 to its completion in October 2011. Channels were dredged near the Pond Eleven site, the surrounding ponds and the adjacent Otay River. A levee was breached to open Pond Eleven to the bay, which made the area tidal. Due to extensive restoration, the datalogger site was relocated. Sonde deployments began in January 2012 at a new location site named Pond Restored (PR). The Pond Restored datalogger is located approximately 560 meters southwest from where the Pond Eleven datalogger was originally. The South Bay and Pond Restored sites are located within the San Diego National Wildlife Refuge Complex. The images below show pre- and post-restoration of the salt ponds and the datalogger sites. The post restoration photo includes the PE datalogger site as a reference to the new PR datalogger site. No sampling occurs at the PE site.

a) Monthly Grab Sampling Program:


Grab samples were collected monthly at all SWMP water quality sonde sites. Monthly grab sampling provides information as to the spatial differences in nutrient levels within the system. The placement of these sites also offers the opportunity to better isolate the possible origin of nutrient inputs as well as the degree of tidal flushing.

b) Diel Sampling Program:

Diel samples were collected monthly at one site. This sampling method provides a temporal perspective of nutrient flux over one tidal cycle at this particular site. Given the location of the site, the diel sampling also provides valuable information as to the degree of tidal flushing of nutrients from the estuary.

3) Research Methods

a) Monthly Grab Sampling Program

Monthly grab samples were taken at the YSI sites (Boca Rio, Oneonta Slough, Pond Restored, and South Bay). All samples were collected less than three hours prior to the projected slack low tide ending a diel sampling cycle. Samples were collected vertically, by hand, in amber wide mouth 1 L acid washed (10% HCl) Nalgene bottles. Sample bottles were rinsed three times with ambient water before sampling. Sampling typically followed a dry period of 72 hours or greater, unless otherwise noted (see 17) Other Remarks at the end of this document). Samples were taken sequentially, within one minute of each other and adjacent to the sonde probes in compliance with the NERRS Nutrient and Chlorophyll Monitoring SOP version 1.7. For January through May, single grab samples were collected at the sites every month and triplicate samples were collected every other month at one of the long term monitoring stations (randomly chosen). These samples were processed in house. Starting in June, duplicate samples were taken at each site and, after filtration, processed by the Chemistry Lab at the Oceanographic Data Facility, Scripps Institution of Oceanography, University of California, San Diego. The Oceanographic Data Facility's nutrient analysis procedures can be found at https://scripps.ucsd.edu/ships/shipboard-technical-support/odf/documentation/nutrient-analysis. At this time the TR NERR also began reporting silicate. All samples were immediately stored on ice and frozen within four hours. Samples were delivered to the lab typically within 48 hours.

At the time of nutrient sampling, in-situ measurements of temperature, salinity and dissolved oxygen were taken using a handheld YSI Pro Plus water quality instrument.

b) Diel Sampling

Diel samples were collected at the Pond Restored site. Samples were taken at intervals of 2hrs. 15mins for a total of 12 samples over one lunar day. Samples were collected using an ISCO model 6712 autosampler with a sixty foot sample tube and polypropylene strainer. The strainer was suspended in a minnow trap (approximately 25cm above the channel bottom) between the bank and sonde. The sampler was located approximately 1.5m above the strainer. The sampler was programmed to collect 1 liter per sample utilizing ISCO's 24-bottle kit in a standard tub stocked with ice. At the time of retrieval, the sampling program is suspended and the sample bottles are capped. Samples typically reached the lab within one hour of retrieval for filtration.

All sample containers (ISCO 1L Polyethylene bottles for diel samples and Nalgene 1L wide mouth amber opaque HDPE bottles for grab samples) were acid washed prior to sampling. The washing procedure consisted of four rinses with DI water, a gentle squirt of Liquinox phosphate free detergent, six rinses with DI water, a soak of at least twenty minutes in 10% HCl, and, lastly, six rinses with Type 1 reagent water (18M Ω -cm or greater).

4) Site Location and Character

General site Characteristics (TRNERR)

- a) Latitude and Longitude: 3° 34' N, 117° 7' W
- b) Tidal range: approximately -2ft to + 7ft MLLW
- c) Salinity: 4ppt (extreme rain events) to 38 ppt (except Pond Restored and South Bay)
- d) The dominant freshwater source to the estuary is the Tijuana River, which drains a 4,483km² watershed, approximately 2/3 of which resides in Mexico. Stream flows in the river vary considerably from season to season and year to year, with no flow during many months and a

mean annual discharge of .82m³/s. Additional freshwater sources are storm drains located mostly in the northern arm of the estuary from the adjacent military airfield and residential area. The entire estuary is shallow and has a relatively small tidal prism (0.36 Mm³), so even low freshwater flows result in reduced salinity throughout the reserve. Estimated residence times for freshwater entering the estuary vary from 7 hours to a few days, depending on the tide and mouth conditions. Rainfall within the watershed accounts for most of the freshwater entering the reserve, with 90% of the mean annual rainfall occurring between November and April. Freshwater discharge with untreated sewage occurs year round, although these have decreased with the construction of a binational water treatment plant. Vegetation in the area is dominated by common pickleweed (*Salicornia pacifica*) and Pacific cordgrass (*Spartina foliosa*).

Specific Site characteristics: Boca Rio (BR)

- a) The datalogger station is located approximately 400m north of the Tijuana River in the middle of a channel which runs north-south; 32° 33′ 33.7′′ N, 117° 7′ 44.3″ W.
- b) Elevation of sonde's depth port: 0.053m NAVD88, approximately 0.5m above the channel bottom.
- c) Depth: approximately 0.5m to 2.7m.
- d) Channel width: approximately 30m.
- e) Bottom type: sand, very little silt and clay.

Specific Site characteristics: Oneonta Slough (OS)

- a) The datalogger station is located on the upper portion of the Oneonta Slough in the northwest corner of the reserve, approximately 1.4km north of the Tijuana River in the middle of the same channel as the Boca Rio site; 32° 34′ 6.0" N, 117° 7′ 52.6" W.
- b) Elevation of sonde's depth port: 0.332m NAVD88, approximately 0.5m above the channel bottom.
- c) Depth: approximately 0.7m to 2.4m.
- d) Channel width: approximately 23m.
- e) Bottom type: silty clay.
- f) The area adjacent to the west side of the channel is developed. There is a 50+ meter buffer of natural vegetation between development and the channel. The area adjacent to the east side of the channel is relatively undisturbed.
- g) Direct impacts may be runoff from streets into channel during rain events.

Specific Site Characteristics: Pond Restored (PR)

- a) The datalogger is located at the middle levee breach between Pond Eleven and Pond Ten, which is part of the South San Diego Bay Coastal Wetland Restoration and Enhancement Project; 32° 35′ 45.9″, 117° 7′ 5.5″ W.
- b) Elevation of sonde;s depth port: -0.310m NAVD88, approximately 0.5m above the channel bottom.
- c) Depth: 0.5m to 3.2m.
- d) Channel width: approximately 40m.
- e) Bottom type: very fine mud.
- f) Salinity: 2ppt (extreme rain event) to 33 ppt.

Specific Site Characteristics: South Bay (SB)

- a) The datalogger is located at the mouth of Otay River where it flows into San Diego Bay; 32° 36° 3.6° N, 117° 06° 57.0° W.
- b) Elevation of sonde's depth port: -0.379m NAVD88, approximately 0.5m above the channel bottom.
- c) Depth: approximately 0.7m to 3.2m

d) Channel width: approximately 25m

e) Bottom type: very fine mud.

f) Salinity: 2 ppt (extreme rain event) to 40 ppt

5) Code Variable Definitions

Station code names:

tjrbrnut = Tijuana River Reserve Boca Rio nutrient data

tjrosnut = Tijuana River Reserve Oneonta Slough nutrient data

tjrsbnut = Tijuana River Reserve South Bay nutrient data

tjrpenut = Tijuana River Reserve Pond Restored nutrient data

Monitoring program codes:

monthly grab sample program = 1 diel grab sample program = 2

6) Data Collection Period

Sampling was performed on a monthly basis, attempting to sample at approximately 1 month intervals. Diel sampling at Pond Restored began with the first of the ISCO samples at the projected low tide. All other (grab) samples were collected 3 hours prior to the low tide corresponding to the end of the ISCO sampling period. Below are the water quality measurements at the time of retrieving the grab samples, as measured by the handheld YSI Professional Plus water quality instrument.

Grab Sampling:

Station	Date	Rep 1	Rep 2	Rep 3
tjrbrnut	1/14/15	9:35		
tjrbrnut	2/26/15	8:16		
tjrbrnut	3/26/15	6:40		
tjrbrnut	4/21/15	14:25		
tjrbrnut	5/19/15	12:56		
tjrbrnut	6/25/15	7:40	7:41	
tjrbrnut	7/9/15	7:12	7:13	
tjrbrnut	8/12/15	11:38	11:39	
tjrbrnut	9/15/15	14:31	14:32	
tjrbrnut	10/13/15	13:44	13:45	
tjrbrnut	11/20/15	9:05	9:06	
tjrbrnut	12/18/15	7:32	7:33	
tjrosnut	1/14/15	9:53		
tjrosnut	2/26/15	8:40		
tjrosnut	3/26/15	6:56		
tjrosnut	4/21/15	14:41		
tjrosnut	5/19/15	12:41		
tjrosnut	6/25/15	8:04	8:05	

tjrosnut	7/9/15	7:35	7:36	
tjrosnut	8/12/15	11:57	11:58	
tjrosnut	9/15/15	14:50	14:51	
tjrosnut	10/13/15	13:25	13:26	
tjrosnut	11/20/15	9:23	9:24	
tjrosnut	12/18/15	7:16	7:17	
tjrprnut	1/14/15	11:12		
tjrprnut	2/26/15	9:41		
tjrprnut	3/26/15	7:25		
tjrprnut	4/21/15	13:50		
tjrprnut	5/19/15	14:00		
tjrprnut	6/25/15	9:10	9:11	
tjrprnut	7/9/15	8:25	8:26	
tjrprnut	8/12/15	12:48	12:49	
tjrprnut	9/15/15	15:45	15:46	
tjrprnut	10/13/15	15:05	15:06	
tjrprnut	11/20/15	10:06	10:07	
tjrprnut	12/18/15	8:40	8:41	
tjrsbnut	1/14/15	10:46		
tjrsbnut	2/26/15	9:21	9:22	9:23
tjrsbnut	3/26/15	7:41		
tjrsbnut	4/21/15	13:26		
tjrsbnut	5/19/15	13:32	13:33	13:34
tjrsbnut	6/25/15	8:54	8:55	
tjrsbnut	7/9/15	8:07	8:08	
tjrsbnut	8/12/15	12:32	12:33	
tjrsbnut	9/15/15	15:27	15:28	
tjrsbnut	10/13/15	14:48	14:49	
tjrsbnut	11/20/15	9:52	9:53	
tjrsbnut	12/18/15	8:08	8:09	

Diel Sampling:

Station	Start Date	Start Time	End Date	End Time
tjrprnut	1/13/15	10:15	1/14/15	11:00
tjrprnut	2/25/15	9:30	2/26/15	10:15
tjrprnut	3/25/15	7:30	3/26/15	8:15
tjrprnut	4/20/15	16:00	4/21/15	16:45
tjrprnut	5/18/15	14:45	5/19/15	15:30
tjrprnut	6/24/15	8:45	6/25/15	9:30

tjrprnut	7/8/15	8:00	7/9/15	8:45
tjrprnut	8/11/15	13:50	8/12/15	14:35
tjrprnut	9/14/15	15:30	9/15/15	16:15
tjrprnut	10/12/15	14:45	10/13/15	15:15
tjrprnut	11/19/15	9:30	11/20/15	10:15
tjrprnut	12/17/15	7:30	12/18/15	8:30

Note: Time code is based on a 2400 hour clock and refers to Pacific Standard Time. Date format is mm/dd/yyyy.

7) Associated Researchers and Projects

The research program at the TRNERR focuses on adaptive approaches to wetlands management, which involves coupling scientific investigation with management action. One focal area of research continues to be adaptive restoration, and the TRNERR has a long history of science-based restoration efforts. These programs incorporate descriptive and experimental approaches to investigate biotic and abiotic responses to marsh restoration, including ways to better achieve desired ecosystem responses. Two SWMP sites, based in South San Diego Bay, are associated with a marsh restoration in that area. Another active area of research is invasive species ecology and management. Although estuaries are typically invaded by a broad suite of species from many habitat types, current research is focusing on terrestrial and riparian invaders able to cross ecotones and invade salt marsh habitats. Researchers at the TRNERR are investigating mechanisms of invasions, impacts of invaders, and ecosystem recovery after exotic species control.

NERR SWMP water quality and weather data are used in a variety of reserve-based and external research and education programs. Water quality data from the Tijuana River, which rarely experiences mouth closures, provides an interesting contrast to data from other regional systems that experience frequent closure events. Also, SWMP water quality data are incorporated into a high school curriculum developed at the reserve. Tier 1 nutrient sampling is being conducted at all water quality datalogger stations. NERR SWMP meteorological sampling is being conducted at 1 station which is located near the former Tidal Linkage water quality station. In addition, much of the reserve is used as a test bed for research related to adaptive marsh restoration, with recent attention on the Model Marsh. NERR SWMP WQ and MET data are available at www.nerrsdata.org.

8) Distribution

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and process the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor

will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: www.nerrsdata.org; *accessed* 12 October 2012.

NERR nutrient data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page www.nerrsdata.org. Data are available in comma separated version format.

II. Physical Structure Descriptors

9) Entry Verification

From January to May, Holly Bellringer collected, filtered and analyzed all samples and was responsible for data entry and QAQC. Starting in June, Justin McCullough and other staff collected and filtered the samples and were responsible for data entry and QAQC. After filtration, the samples were delivered to the chemistry lab at the Oceanographic Data Facility, Scripps Institution of Oceanography, University of California, San Diego, where lab analyses were performed. The results are reported in μ M. For purposes of consistency in the NERR System, the Tijuana River NERR calculates the concentrations as mg/l based on atomic weights of 14.01, 30.97, and 28.09 for N, P, and Si, respectively. Therefore, TRNERR staff multiplies the concentrations reported by 0.01401, 0.03097, and 0.02809 to yield concentrations in mg/L as N, P, and Si, respectively.

Nutrient data are entered into a Microsoft Excel worksheet and processed using the NutrientQAQC Excel macro. The NutrientQAQC macro sets up the data worksheet, metadata worksheets, and MDL worksheet; adds chosen parameters and facilitates data entry; allows the user to set the number of significant figures to be reported for each parameter and rounds using banker's rounding rules; allows the user to input MDL values and then automatically flags/codes measured values below MDL and inserts the MDL; calculates parameters chosen by the user and automatically flags/codes for component values below MDL, negative calculated values, and missing data; allows the user to apply QAQC flags and codes to the data; produces summary statistics; graphs selected parameters for review; and exports the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database.

10) Parameter Titles and Variable Names by Data Category

Required NOAA/NERRS System-wide Monitoring Program water quality parameters are denoted by an asterisks "*".

Data Category	Parameter	Variable Name	Units of Measure
a) Phosphorus	*Orthophosphate	PO4F	mg/L as P
b) Nitrogen	*Nirite+Nitrate, filtered *Ammonium, filtered *Dissolved Inorganic Nitrogen	NO23F NH4F DIN	mg/L as N mg/L as N mg/L as N
c) Plant Pigments	*Chlorophyll a,	CHLA_N	$\mu g/L$
d) Other	Silicate, Filtered	SiO4F	mg/L as SI

Notes:

- 1. Time is coded based on a 2400 clock and is referenced to Standard Time.
- 2. Reserves have the option of measuring either NO2 and NO3 or they may substitute NO23 for individual analyses if they can show that NO2 is a minor component relative to NO3. NO2 levels are predominately low at TJR Reserve and analysis was discontinued as a result.

11) Measured and Calculated Laboratory Parameter

a) Parameters Measured Directly

Nitrogen species: NO23F, NH4F

Phosphorus species: PO4F

Other CHLA, SiO4F

b) Calculated Variables

DIN: NO23F+NH4F

12) Limit of Detection

Method detection limit as defined in the Code of Federal Regulations, 40 CFR 136, Appendix B, as: "the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte."

Method Detection Limits (MDL) for measured water quality parameters.

<u>Parameter</u>	Start Date	End Date	<u>MDL</u>
NH4F	1/1/2015	5/31/2015	0.004mg/L as N
NH4F	6/1/2015	12/31/2015	0.0028mg/L as N
NO23F	1/1/2015	5/31/2015	0.010mg/L as N
NO23F	6/1/2015	12/31/2015	0.00028mg/L as N
PO4F	1/1/2015	5/31/2015	0.003mg/L as N
PO4F	6/1/2015	12/31/2015	0.00062mg/L as N
CHLA N	1/1/2015	12/31/2015	0.5 μg/L

MDLs are determined by multiplying the standard deviation by the t value for the number of samples run. As of June 2015, MDLs were determined by the Chemistry Lab at the Oceanographic Data Facility, Scripps Institution of Oceanography, University of California, San Diego.

13) Laboratory Methods

a) Parameter: PO4F

January - May

Method Reference: Method 4500-P F (2005), Standard Methods for the

Examination of Water and Wastewater 21st ed.

The orthophosphate ion (PO₄³⁻) reacts with ammonium Method Descriptor:

> molybdate and antimony potassium tartrate under acidic conditions to form a complex. This complex is reduced with ascorbic acid to form a blue complex which absorbs light at 880 nm. The absorbance is proportional to the

concentration of orthophosphate in the sample.

Preservation Method: Filtered through both Whatman GF/F (.7µm pore size)

and MF-Millipore (.45µm pore size) membrane filters

and stored at or below -10°C.

Instrumentation: Thermo Spectronic Aquamate Spectophotometer

June - December

Method Reference: Orthophosphate is analyzed using a modification of the

> Bernhardt and Wilhelms method. Bernhardt, H., and Wilhelms, A., 1967. "The continuous determination of low level iron, soluble phosphate and total phosphate with the AutoAnalyzer," Technicon Symposia, I,pp.385-

389.

Method Descriptor: Acidified ammonium molybdate is added to a seawater

> sample to produce phosphomolybdic acid, which is then reduced to phosphomolybdous acid (a blue compound) following the addition of dihydrazine sulfate. The sample is passed through a 10mm flowcell and absorbance measured at 820nm. The absorbance is proportional to the concentration of orthophosphate in

the sample.

Preservation Method: Filtered through both Whatman GF/F (.7µm pore size)

and MF-Millipore (.45µm pore size) membrane filters

and stored at or below -10°C.

Instrumentation: AA3 Autoanalyzer made my SEAL Analytical.

b) Parameter: NH4F

January - May

Method Reference: Method 4500-NH₃ F (1995), Standard Methods for the

Examination of Water and Wastewater 19th ed.; EPA-600/4-79-020, Revised March 1983, Method 350.1USEPA, 40 CRF, Part 36 Table 1B, footnote 6,

1994.

Method Descriptor: This method is based on the Berthelot reaction.

Ammonia reacts with alkaline phenol, then with sodium

hypochlorite to form indophenol blue. Sodium nitroprusside (nitroferricyanide) is added to enhance sensitivity. The absorbance of the reaction product is measured at 630nm, and is directly proportional to the

original ammonia concentration in the sample.

Preservation Method: Filtered through both Whatman GF/F (.7µm pore size)

and MF-Millipore (.45 μ m pore size) membrane filters and stored at or below -20° C for less than 72 hours.

Instrumentation: Thermo Spectronic Aquamate Spectrophotometer

June – December

Method Reference: Ammonia is analyzed using the method described by

Kerouel and Aminot. Kerouel, R. and Aminot, A., 1997. "Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis." Marine Chemistry, vol 57, no. 3-4, pp. 265-275.

Method Descriptor: The sample is combined with a working reagent made

up of ortho-phthalaldehyde, sodium sulfite and borate buffer and heated to 75°C. Fluorescence proportional to

the ammonia concentration is emitted at 460nm

following excitation at 370nm.

Preservation Method: Filtered through both Whatman GF/F (.7µm pore size)

and MF-Millipore (.45µm pore size) membrane filters

and stored at or below -10°C.

Instrumentation: AA3 Autoanalyzer made my SEAL Analytical.

c) Parameter: NO23F

January - May

Method Reference: Method 4500-NO₃ E (1995), Standard Methods for the

Examination of Water and Wastewater 19th ed.

USEPA, Methods for Chemical Analysis of Water and

Wastes, Method 353.2.

Methods of Determination of Inorganic Substances in Water and Fluvial Sediments. Book 5. Chapter A1. U.S.

Dept. of the Interior. U.S. Geological Survey.

Method Descriptor: Nitrate is quantitatively reduced to nitrite by passing the

sample through a copperized cadmium column. The nitrite is determined by diazotizing with sulfanilamide

followed by coupling with N-(1-

naphthyl)ethylenediamine dihydrochloride. The resulting water soluble dye has a magenta color which is read at

520 nm.

Preservation Method: Filtered through both Whatman GF/F (.7µm pore size)

and MF-Millipore (.45 μm pore size) membrane filters and stored at or below -20° C for less than 21 days.

Instrumentation: Thermo Spectronic Aquamate Spectophotometer

June - December

Method Reference: A modification of the Armstrong et al. procedure is used

for the analysis of nitrate and nitrite. Armstrong, F.A.J., Stearns, C.A., and Strickland, J.D.H., 1967. "The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment," Deep-Sea Research, 14, pp.381-

389.

Method Descriptor: For nitrate analysis, a seawater sample is passed through

a cadmium column where the nitrate is reduced to nitrite. This nitrite is then diazotized with sulfanilamide and

coupled with

N-(1-naphthyl)-ethylenediamine to form a red dye. The sample is then passed through a 10mm flowcell and absorbance measured at 540nm. The procedure is the same for the nitrite analysis but without the cadmium

column.

Preservation Method: Filtered through both Whatman GF/F (.7µm pore size)

and MF-Millipore (.45µm pore size) membrane filters

and stored at or below -10°C.

Instrumentation: AA3 Autoanalyzer made my SEAL Analytical.

d) Parameter: CHLA

January – December

Method Reference: USEPA Method 446.0. In *Vitro* Determination of

Chlorophylls a, b, c₁, c₂, and Pheopigments in Marine and Freshwater Algae by Visible Spectrophotometry.

Rev 1.2. September 1997.

Method Descriptor: Samples are filtered at .7µm. Chlorophyll is extracted

with aqueous acetone and concentrations are determined

with a spectrophotometer.

Preservation Method: Filtered through a Whatman GF/F (.7µm pore size)

membrane filter and stored in a container with desiccant

at or below -10°C.

Instrumentation: Thermo Spectronic Aquamate Spectophotometer

e) Parameter: SiO4F

June – December

Method Reference: Silicate is analyzed using the basic method of Armstrong

et al. Armstrong, F.A.J., Stearns, C.A., and Strickland, J.D.H., 1967. "The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment,"

Deep-Sea Research, 14, pp.381-389.

Method Descriptor: Acidified ammonium molybdate is added to a seawater

sample to produce silicomolybdic acid which is then reduced to silicomolybdous acid (a blue compound) following the addition of stannous chloride. The sample is passed through a 10mm flowcell and measured at

660nm.

Preservation Method: Filtered through both Whatman GF/F (.7µm pore size)

and MF-Millipore (.45µm pore size) membrane filters

and stored at or below -10°C.

Instrumentation: AA3 Autoanalyzer made my SEAL Analytical.

14) Field and Laboratory QAQC programs

a) Precision

- i) **Field Variability**: From January to May, single grab samples were collected at all sites. Triplicate grab samples were collected every other month at a randomly chosen site. Starting in June 2015, duplicate samples (i.e., two successive samples in different bottles) were collected at all sites.
- ii) **Laboratory Variability**: A minimum of 10% of all samples are replicated (N=2).
- iii) Inter-organizational splits: NONE

b) Accuracy

- i) **Sample Spikes**: A minimum of 10% of all samples are spiked, in duplicate. Percent recovery must range between 95% and 105% to be considered under control.
- ii) Standard Reference Material Analysis: NONE
- iii) Cross Calibration Exercise: NONE

15) QAQC flag definitions

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). QAQC flags are applied to the nutrient data during secondary QAQC to indicate data that are out of sensor range low (-4), rejected due to QAQC checks (-3), missing (-2), optional and were not collected (-1), suspect (1), and that have been corrected (5). All remaining data are flagged as having passed initial QAQC checks (0) when the data are uploaded and assimilated into the CDMO ODIS as provisional plus data. The historical data flag (4) is used to indicate data that were submitted to the CDMO prior to the initiation of secondary QAQC flags and codes (and the use of the automated primary QAQC system for WQ and MET data). This flag is only present in historical data that are exported from the CDMO ODIS.

- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

16) QAQC code definitions

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the sample or sample collection, sensor errors document common sensor or parameter specific problems, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point. However, a record flag column (F_Record) in the nutrient data allows multiple comment codes to be applied to the entire data record.

General errors

GCM	Calculated value could not be determined due to missing data
GCR	Calculated value could not be determined due to rejected data
GDM	Data missing or sample never collected
GQD	Data rejected due to QA/QC checks
GQS	Data suspect due to QA/QC checks
GSM	See metadata

Calculated such a could not be determined due to missing data

Sensor errors

1301 011013	
SBL	Value below minimum limit of method detection
SCB	Calculated value could not be determined due to a below MDL
	component
SCC	Calculation with this component resulted in a negative value
SNV	Calculated value is negative

SRD Replicate values differ substantially SUL Value above upper limit of method detection **Parameter Comments** CAB Algal bloom CDR Sample diluted and rerun CHB Sample held beyond specified holding time CIP Ice present in sample vicinity Flotsam present in sample vicinity CIF Sample collected later/earlier than scheduled CLE CRE Significant rain event **CSM** See metadata CUS Lab analysis from unpreserved sample Record comments CAB Algal bloom Sample held beyond specified holding time **CHB** CIP Ice present in sample vicinity CIF Flotsam present in sample vicinity CLE Sample collected later/earlier than scheduled **CRE** Significant rain event **CSM** See metadata CUS Lab analysis from unpreserved sample Cloud cover clear (0-10%) CCL **CSP** scattered to partly cloudy (10-50%) partly to broken (50-90%) CPB overcast (>90%) COC CFY foggy CHY hazy cloud (no percentage) CCC **Precipitation PNP** none drizzle **PDR** PLR light rain PHR heavy rain **PSQ** squally PFQ frozen precipitation (sleet/snow/freezing rain) mixed rain and snow **PSR** Tide stage

TSL Wave height

TSE

TSF

TSH

ebb tide

flood tide

high tide

low tide

```
WH0
          0 to < 0.1 meters
WH1
          0.1 to 0.3 meters
WH2
          0.3 to 0.6 meters
WH3
          0.6 \text{ to} > 1.0 \text{ meters}
WH4
           1.0 to 1.3 meters
WH5
           1.3 or greater meters
```

Wind direction

N from the north **NNE** from the north northeast

NE from the northeast ENE from the east northeast

Е from the east

ESE from the east southeast SE from the southeast SSE from the south southeast

S from the south

SSW from the south southwest

SWfrom the southwest

WSW from the west southwest

W from the west

WNW from the west northwest NWfrom the northwest

NNW from the north northwest

Wind speed

WS0 0 to 1 knot WS1 > 1 to 10 knots WS2 > 10 to 20 knots WS3 > 20 to 30 knots WS4 > 30 to 40 knots WS5 > 40 knots

17) Other Remarks

Data may be missing due to problems with sample collection or processing. Laboratories in the NERRS System submit data that are censored at a lower detection rate limit, called the Method Detection Limit or MDL. MDLs for specific parameters are listed in the Laboratory Methods and Detection Limits Section (Section II, Part 12) of this document. Concentrations that are less than this limit are censored with the use of a QAQC flag and code, and the reported value is the method detection limit itself rather than a measured value. For example, if the measured concentration of NO23F was 0.0005 mg/l as N (MDL=0.0008), the reported value would be 0.0008 and would be flagged as out of sensor range low (-4) and coded SBL. In addition, if any of the components used to calculate a variable are below the MDL, the calculated variable is removed and flagged/coded -4 SCB. If a calculated value is negative, it is rejected and all measured components are marked suspect. If additional information on MDL's or missing, suspect, or rejected data is needed, contact the Research Coordinator at the Reserve submitting the data.

Note: The way below MDL values are handled in the NERRS SWMP dataset was changed in November of 2011. Previously, below MDL data from 2007-2010 were also flagged/coded, but either reported as the measured value or a blank cell. Any 2007-2011 nutrient/pigment data downloaded from the CDMO prior to November of 2011 will reflect this difference.

With the *exception* of the samples collected in *May* and *September*, no samples were collected within 72 hours of a rainfall event. Rain events occurred on May 15-16 (approximately 48 hours before the ISCO began sampling) and September 15 (during the ISCO sampling period).

The following NO23F samples were diluted to 5ml and then post-corrected/calculated to 25ml. They are flagged <5> [GSM] (CDR).

tjrbrnut	1/14/15 9:35	1	1
tjrosnut	1/14/15 9:53	1	1
tjrbrnut	2/26/15 8:16	1	1
tjrosnut	2/26/15 8:40	1	1
tjrbrnut	5/19/15 12:56	1	1
tjrosnut	5/19/15 12:41	1	1

The following chlorophyll (CHLA) samples are missing due to laboratory processing errors that resulted in lost samples.

tjrprnut	6/24/15 22:15	2	1
tjrprnut	8/11/15 22:50	2	1
tjrosnut	8/12/15 11:58	1	2
tjrprnut	12/17/15 12:00	2	1

During storm events (when flow in the Tijuana River exceeds 1000 liters per second) and occasionally during maintenance and/or infrastructure failure, the International Boundary and Water Commission's CILA pump station is shut off, resulting in rainwater, urban runoff and raw sewage flowing over the United States – Mexico border and into the Tijuana River Estuary. Note that this will affect the nutrient data, resulting in higher than normal values. Flows that occurred 72 hours or sooner or during nutrient sampling are listed below. Unfortunately, not always are we informed when the pump is shutoff, though, we are generally informed when operation resumes. In those cases, only the time and date of when the pump operation resumed is shown.

11/16/2015 12:00 - 11/17/2015 08:30 11/19/2015 07:15 - 10:00 12/17/2015 08:00