Tijuana River (TJR) NERR Water Quality Metadata January to December 2014 Last Revised July 3, 2016

I. Data Set and Research Descriptors

1) Principal Investigators and contact persons

Jeff Crooks, Research Coordinator 301 Caspian Way

Imperial Beach, CA 91932 Phone: (619) 575-3613 Fax: (619) 575-6913

E-mail: jcrooks@trnerr.org

Chris Peregrin, Reserve Manager 301 Caspian Way

Imperial Beach, CA 91932 Phone: (619) 575-3613 Fax: (619) 575-6913

E-mail: cperegrin@parks.ca.gov

Holly Bellringer, Research Associate 301 Caspian Way

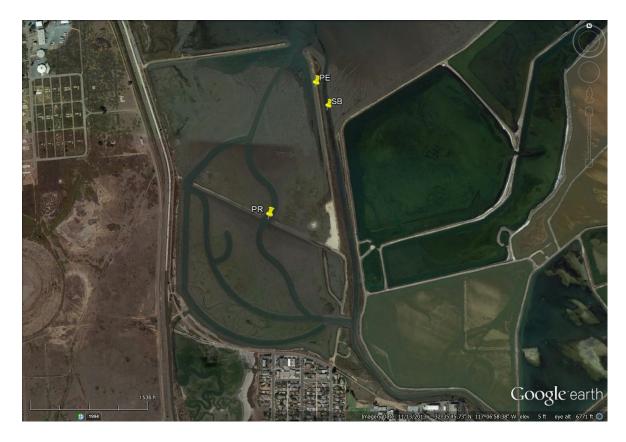
Imperial Beach, CA 91932 Phone: (619) 575-3613 Fax: (619) 575-6913

E-mail:hbellringer@trnerr.org

2) Entry Verification

Deployment data are uploaded from the YSI datasonde to a Personal Computer (IBM compatible). Files are exported from EcoWatch in a comma-delimited format (.CDF) and uploaded to the CDMO where they undergo automated primary QAQC and become part of the CDMO's online provisional database. Excessive pre- and post-deployment data are removed from the file prior to upload with at least 2 hours of pre- and post-deployment data retained to assist in data management. During primary QAQC, data are flagged if they are missing, out of sensor range. The edited file is then returned to the Reserve where it is opened in Microsoft Excel and processed using the CDMO's NERRQAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, remove remaining pre- and post-deployment data, append files, and export the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. Where deployment overlap occurs between files, the data produced by the newly calibrated datasonde is generally accepted as being the most accurate. For

more information on QAQC flags and codes, see Sections 11 and 12. The person responsible for data management is Holly Bellringer.


3) Research Objectives

The Tijuana River National Estuarine Research Reserve is impacted heavily by periodic raw sewage outflows and urban development. About a quarter of the reserve's 2,531 acres are tidally influenced and few channels are deep enough for datalogger deployment. Two stations were originally set up: a treatment station was set up close to the mouth on the Southern end of the Oneonta Slough, while a control station was set up on the northern end of Oneonta Slough. The treatment station location was chosen because it would be the site most affected by sewage outflow. Deployment at the treatment station, however, was continually halted by both shifting sediment and massive wracks of kelp (*Macrocystis pyrifera*), which would often bury the deployment set-up on incoming tides. After a number of different deployment equipment designs were implemented, with no success, logging at this site was terminated.

Two YSI datalogger stations are installed at the Tijuana River reserve and two datalogger stations are located off the reserve. Station locations are designed to investigate spatial gradients of water quality parameters across the reserve as well as document the water quality changes over time to areas in the reserve which have been restored to increase tidal flushing. The original control station in the northern end of Oneonta Slough (OS) is still in place. The station was located at the inlet to the Model Marsh (MM), a constructed 20-acre restoration site in the southern arm of the estuary. The Model Marsh was opened to tidal flushing in February 2000 and data logging at the station began in October 2000. The site was discontinued in January 2008 due to heavy sedimentation. A second datalogger, Boca Rio (BR), was established in December 2004 and is located near the mouth of the Tijuana River. This station replaces the River Channel (RC) station, which was established in August 2002 to monitor the Tijuana River, the largest source of freshwater to the Reserve. This station was discontinued in November 2004 due to unusually heavy sedimentation from intense rainfall events. The South Bay (SB) datalogger was established in January 2008 and is located at the mouth of Otay River which flows into South San Diego Bay. The last sonde location, Pond Eleven (PE), was a non-tidal salt pond adjacent to the South Bay logger. A flood gate was the only source of water into the pond. The Pond Eleven sonde was deployed from July 2008 to September 2010. The US Fish and Wildlife Service began restoration of this area which included Pond Eleven from September 2010 and finished in October 2011. Channels were dredged between Pond Eleven, surrounding ponds and the adjacent Otay River. A levee was breached to open Pond Eleven into South San Diego Bay which made the area tidally influenced. Due to extensive restoration the datalogger site was relocated. Sonde deployments began in January 2012 at a new location site named Pond Restored (PR). The Pond Restored datalogger is located approximately 560 meters from where the Pond Eleven datalogger was originally. The South Bay and Pond Restored sites are located within the San Diego National Wildlife Refuge Complex. The photo below show the pre restoration of the salt ponds and datalogger sites. The post restoration photo includes the PE datalogger site as a reference to the new PR datalogger site. No sampling occurs at the PE site.

Post Restoration

4) Research Methods (Dataloggers)

Dataloggers at the Oneonta Slough, Boca Rio, South Bay, and Pond Restored stations are deployed using a 4-inch diameter PVC pipe that is strapped vertically to two "rail" style fence posts driven into the sediment. Multiple 1.5 inch holes have been drilled around the bottom of the tube to permit unrestricted water flow to the sensors. During deployment the datalogger units are then placed into and rest on a bolt fixed across the bottom of the tubes.

The sampling period is between two and four weeks, with measurements taken every 15 minutes. Measurements for specific conductivity, salinity, dissolved oxygen (percent saturation), dissolved oxygen (mg/l), temperature, turbidity, pH, chlorophyll and water level are recorded. At the end of each sampling period, the YSI dataloggers are brought back to the laboratory for data downloading, cleaning and recalibration. These procedures are carried out according to the methods described in the YSI Operations Manual (see sections 3 and 7). Calibration standards for specific conductivity are purchased from YSI, turbidity standard is purchased from YSI, and pH standards (7 and 10) are purchased from Fisher Scientific. The QA/QC procedures for the collected data are followed from the CDMO Operations Manual version 6.5.

A Sutron Sat-Link2 transmitter was installed at the Oneonta Slough station on 12/20/2006 and transmits data to the NOAA GOES satellite, NESDIS ID #3B0252F2. The transmissions are scheduled hourly and contain four (4) datasets reflecting fifteen minute data sampling intervals. The telemetry data is "Provisional" data and not the "Authentic"

dataset used for long term monitoring and study. This data can be viewed by going to http://cdmo.baruch.sc.edu.

5) Site location and character

General site Characteristics (TRNERR)

- a) Tidal exchange (extremes): approx. -2 +7 MLLW,
- b) Salinity: 4 ppt (extreme rain events) to 38 ppt (except Pond Restored and South Bay)
- c) Latitude and longitude: 32 deg. 34 min. N, 117 deg. 07 min. W
- d) Potential impacts include runoff from the adjacent military airfield and residential area and sewage spills from Mexico into the Tijuana River. Approximately 2/3 of the watershed for the Tijuana River estuary is in Mexico. Vegetation in the area is dominated by common pickleweed (*Salicornia virginica*) and Pacific cordgrass (*Spartina foliosa*).
- e) The dominant freshwater source to the estuary is the Tijuana River, which drains a 4,483 sq. km watershed. Stream flows in the river vary considerably from season to season and year to year with no flow during many months with a mean annual discharge of .82 cubic meters per second (cms). Additional freshwater sources are storm drains located mostly in the northern arm of the estuary. The entire estuary is shallow and has a relatively small tidal prism (0.36 Mm³) so even low freshwater flows result in reduced salinity throughout the reserve. Estimated residence times for freshwater entering the estuary vary from 7 hours to a few days depending on the tide and mouth conditions. Rainfall within the watershed accounts for most of the freshwater entering the reserve with 90% of the mean annual rainfall falling between November and April. Freshwater discharges with untreated sewage occur year round, although these have decreased with the construction of binational water treatment plant.

Specific Site characteristics: Boca Rio (BR)

- a) Orientation of site: Datalogger station is located approximately 300 meters north of the Tijuana River in the middle of a channel which runs north to south. Latitude is 32deg 33min 34.3sec N and Longitude is -117 deg 07 min 43.7 sec W.
- b) The elevation of channel bottom: No current survey data available
- c) Channel width: Approximately 10 m
- d) Bottom type: mostly sand, very little mud

Specific Site characteristics: Oneonta Slough (OS)

- a) Orientation of site: The datalogger station is located on the upper portion of Oneonta Slough. The channel runs north to south and is located on the northwestern edge of the reserve. Latitude is 32 deg 34 min 04.8 sec N, longitude is -117 deg 07 min 52.3 sec W.
- b) The elevation of the channel bottom directly below the datalogger is approx. 0.55 meters NGVD (date of last survey was 2001).
- c) Channel width is approx. 20 meters. Datalogger site is located 1km from the river mouth.
- d) Bottom type: sand and sediment
- e) Area adjacent to west side of channel is developed. There is a 50 meter buffer of natural vegetation between development and the channel. Area adjacent to east side of channel is relatively undisturbed.
- f) Direct impacts may be runoff from streets into channel during rain events.

Specific Site Characteristics: Pond Restored (PR)

- a) Orientation of site: The datalogger is located at the middle levee breach between Pond Eleven and Pond Ten. Latitude is 32 deg 35 min 47.19 sec, Longitude is -117 deg 7 min 8.5 sec.
- b) Salinity: approximately 2ppt to 33 ppt

- c) The elevation of the channel bottom: No current survey data available
- d) Tidal Exchange (extremes): approximately -2 to +7 MLLW
- e) Bottom type: very fine mud.

Specific Site Characteristics: South Bay (SB)

- a) Orientation of site: The datalogger is located at the mouth of Otay River where it flows into San Diego Bay. Latitude is 32 deg 36 min 0.49 sec N, longitude is -117 deg 06 min 56.49 sec W.
- b) Salinity: 2 ppt (extreme rain event) to 40 ppt
- c) The elevation of the channel bottom: No current survey data available
- d) Channel width: Approximately 15m
- e) Tidal Exchange (extremes): approximately -2 to +7 MLLW
- f) Bottom type: very fine mud.

6) Data Collection period

YSI model 6600 EDS dataloggers were used to collect data for the following dates and times.

	Deplo	yment	Retrieval	
BR	_			
	12/16/2013	17:00	1/15/2014	16:45
	1/15/2014	17:15	2/8/2014	14:00
	2/9/2014	14;15	3/13/2104	14:30
	3/13/2014	15:00	4/11/2014	13:15
	4/11/2014	13:45	4/25/2014	12:45
	4/25/2014	13:15	5/20/2014	08:15
	5/20/2014	08:45	6/17/2014	07:30
	6/17/2014	08:00	7/16/2014	07:00
	7/16/2014	07:30	8/13/2014	06:15
	8/13/2014	06:45	9/8/2014	14:15
	9/8/2014	14:45	10/8/2014	15:15
	10/8/2014	15:45	11/4/2014	13:30
	11/4/2014	13:45	12/1/2014	12:30
	12/1/2014	13:00	12/30/2014	13:15
	12/30/2014	13:45	1/28/2015	13:45
OS				
	12/16/2013	15:45	1/15/214	14:15
	1/15/2014	16:00	2/9/2014	14:15
	2/9/2014	15:15	2/24/2014	14:15
	2/24/2014	14:30	3/13/2014	15:15
	3/13/2014	15:45	4/10/2014	14:00
	4/10/2014	14:30	4/25/2014	13:15
	4/25/2014	13:45	5/20/2014	09:15
	5/20/2014	09:30	6/17/2014	08:30
	6/17/2014	08:45	7/16/2014	07:45

	7/16/2014	08:00	8/13/2014	07:00
	8/13/2014	07:15	9/8/2014	13:30
	9/8/2014	14:00	10/8/2014	14:30
	10/8/2014	15:00	11/4/2014	14:30
	11/4/2014	15:00	12/1/2014	13:15
	12/1/2014	13:45	12/30/2014	13:45
	12/30/2014	14:15	1/28/2014	14:30
PR				
	12/17/2013	13:15	1/14/2014	13:00
	1/14/2014	13:00	2/18/2014	15:00
	2/18/2014	15:15	3/14/2014	11:45
	3/14/2014	12:00	4/10/2014	11:00
	4/11/2014	10:30	4/28/2014	12:15
	4/28/2014		5/20/2014	13:45
	5/20/2014	14:15	6/17/2014	09:45
	6/17/2014	10:15	7/16/014	09:00
	7/16/2014	09:15	8/14/2014	07:45
	8/14/2014	08:15	9/9/2014	13:30
	9/9/2014	14:00	10/7/2014	12:45
	10/7/2014	13:15	11/4/2014	10:45
	11/4/2014		12/9/2014	14:15
	12/9/2014		12/30/2014	10:15
	12/30/2014	10:30	1/29/2015	10:30
SB				
	12/17/2013	12:30	1/16/2014	12:30
	1/16/2014	12:45	2/18/2014	14:15
	2/18/2014		3/14/2014	11:00
	3/14/2014	11:30	4/10/2014	10:00
	4/10/2014	10:30	4/28/2014	11:30
	4/28/2014	12:00	5/20/2014	13:15
	5/20/2014	13:45	6/17/2014	10:15
	6/17/2014	10:45	7/15/2014	09:00
	7/15/2014	09:30	8/14/2014	08:30
	8/14/2014	09:00	9/9/2014	12:45
	9/9/2014	13:15	10/7/2014	12:15
	10/7/2014	12:30	11/4/2014	11:15
	11/4/2014	11:45	12/9/2014	13:45
	12/9/2014	14:15	12/30/2014	09:45
	12/30/2014	10:00	1/29/2015	10:00
		- • •		

7) Distribution

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and process the data. Following academic

courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: http://www.nerrsdata.org/; accessed 12 October 2012.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu/. Data are available in comma delimited format.

8) Associated researchers and projects

The research program at the TRNERR focuses on adaptive approaches to wetlands management, which involves coupling scientific investigation with management action. One focal area of research continues to be adaptive restoration, and the TRNERR has a long history of science-based restoration efforts. These programs incorporate descriptive and experimental approaches to investigate biotic and abiotic responses to marsh restoration, including ways to better achieve desired ecosystem responses. Two SWMP sites, based in South San Diego Bay, are associated with planned restoration of salt ponds in that area. Another active area of research is invasive species ecology and management. Although estuaries are typically invaded by a broad suite of species from many habitat types, current research is focusing on terrestrial and riparian invaders able to cross ecotones and invade salt marsh habitats. Researchers at the TRNERR are investigating mechanisms of invasions, impacts of invaders, and ecosystem recovery after exotic species control.

NERR SWMP water quality and weather data are used in a variety of reserve-based and external research and education programs. Water quality data from the Tijuana River, which rarely experiences mouth closure, provides an interesting contrast to data from other regional systems, which experience frequent closure events. Also, SWMP water quality data are incorporated into a high school curriculum developed at the reserve. Tier 1 nutrient sampling is being conducted at all water quality datalogger stations. NERR SWMP

meteorological sampling is being conducted at 1 station which is located near the former Tidal Linkage water quality station. In addition, much of the reserve is used as a test bed for research related to adaptive marsh restoration, with recent attention on the Model Marsh.

II. Physical Structure Descriptors

9) Sensor Specifications

YSI 6600EDS V2-4 datasondes were used at Oneonta Slough, South Bay and Pond Restored. These datasondes had depth, temperature/conductivity, ROX DO, pH, turbidity, and chlorophyll probes. The Boca Rio site utilized an YSI 6600 EDS V2-2 datasonde with temperature/conductivity, ROX DO, pH and turbidity probes.

Parameter: Non-Vented Level – Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 30 ft (9.1 m) Accuracy: +/- 0.06 ft (0.018 m) Resolution: 0.001 ft (0.001 m)

Parameter: Temperature Units: Celsius (C)

Sensor Type: Thermistor

Model #: 6560 Range: -5 to 50C Accuracy: +/-0.15 °C Resolution: 0.01 °C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: 4-electrode cell with autoranging

Model #: 6560

Range: 0 to 100 mS/cm

Accuracy: $\pm -0.5\%$ of reading ± 0.001 mS/cm

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependent)

Parameter: Salinity

Units: parts per thousand (ppt)

Sensor Type: Calculated from conductivity and temperature

Range: 0 to 70 ppt

Accuracy: +/- 1.0% of reading or 0.1 ppt, whichever is greater

Resolution: 0.01 ppt

Parameter: Dissolved Oxygen % saturation

Units: percent air saturation (%)

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 6150 ROX

Range: 0 to 500% air saturation

Accuracy: 0-200% air saturation: +/- 1% of the reading or 1% air saturation, whichever is greater

200-500% air saturation: +/- 15% of reading

Resolution: 0.1% air saturation

Parameter: Dissolved Oxygen mg/L (Calculated from % air saturation, temperature and salinity)

Units: milligrams/Liter (mg/L)

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 6150 ROX Range: 0 to 50 mg/L

Accuracy: 0-20 mg/L: +/-0.1 mg/l or 1% of the reading, whichever is greater

20 to 50 mg/L: +/- 15% of the reading

Resolution: 0.01 mg/L

Parameter: pH Units: units

Sensor Type: Glass combination electrode

Model #: 6561 or 6579 Range: 0 to 14 units Accuracy: +/- 0.2 units Resolution: 0.01 units

Parameter: Turbidity

Units: nephelometric turbidity units (NTU)

Sensor Type: Optical, 90 ° scatter, with mechanical cleaning

Model #: 6136

Range: 0 to 1000 NTU

Accuracy: +/- 5 % reading or 2 NTU (whichever is greater)

Resolution: 0.1 NTU

Parameter: Chlorophyll Units: micrograms/Liter

Sensor Type: Optical probe w/mechanical cleaning

Model #: 6025

Range: 0 to 400 µg/Liter

Accuracy: Dependent on methodology Resolution: 0.1 µg/Liter chl a, 0.1 %FS

Depth Qualifier:

The NERR System-Wide Monitoring Program utilizes YSI data sondes that can be equipped with either vented or non-vented depth/level sensors. Readings for both vented and non-vented sensors are automatically compensated for water density change due to variations in temperature and salinity; but for all non-vented depth measurements, changes in atmospheric pressure between calibrations appear as changes in water depth. The error is equal to approximately 1.03 cm for every 1 millibar change in atmospheric pressure, and is eliminated for vented sensors because they are vented to the atmosphere throughout the deployment time interval.

Beginning in 2006, NERR SWMP standard calibration protocol calls for all non-vented depth sensors to read 0 meters at a (local) barometric pressure of 1013.25 mb (760 mm/hg). To achieve this, each site calibrates their depth sensor with a depth offset number, which is calculated using the actual atmospheric pressure at the time of calibration and the equation provided in the SWMP calibration sheet or digital calibration log. This offset procedure standardizes each depth calibration for the entire NERR System. If accurate atmospheric pressure data are available, non-vented sensor depth measurements at any NERR can be corrected.

In 2010, the CDMO began automatically correcting depth/level data for changes in barometric pressure as measured by the Reserve's associated meteorological station during data ingestion. These corrected depth/level data are reported as cDepth and cLevel, and are assigned QAQC flags and codes based on QAQC protocols. Please see sections 11 and 12 for QAQC flag and code definitions.

Salinity Units Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by Reserves. While the 6600 series sondes report salinity in parts per thousand (ppt) units, the EXO sondes report practical salinity units (psu). These units are essentially the same and for SWMP purposes are understood to be equivalent, however psu is considered the more appropriate designation. Moving forward the NERR System will assign psu salinity units for all data regardless of sonde type.

Turbidity Qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by Reserves. While the 6600 series sondes report turbidity in nephelometric turbidity units (NTU), the EXO sondes use formazin nephelometric units (FNU). These units are essentially the same but indicate a difference in sensor methodology, for SWMP purposes they will be considered equivalent. Moving forward, the NERR System will use FNU/NTU as the designated units for all turbidity data regardless of sonde type. If turbidity units and sensor methodology are of concern, please see the Sensor Specifications portion of the metadata.

Chlorophyll Fluorescence Disclaimer:

YSI chlorophyll sensors (6025 or 599102-01) are designed to serve as a proxy for chlorophyll concentrations in the field for monitoring applications and complement traditional lab extraction methods; therefore, there are accuracy limitations associated with the data that are detailed in the YSI manual including interference from other fluorescent species, differences in calibration method, and effects of cell structure, particle size, organism type, temperature, and light on sensor measurements.

10) Coded variable definitions

Boca Rio	BR	tjrbrwq
Oneonta Slough	OS	tjroswq
Pond Restored	PR	tjrprwq
South Bay	SB	tjrsbwq

11) QAQC flag definitions – This section details the automated and secondary QAQC flag definitions. Include the following excerpt:

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is missing and above or below sensor range. All remaining data are then flagged 0, passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions – This section details the secondary QAQC Code definitions used in combination with the flags above. <u>Include the following excerpt</u>:

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F_Record column.

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error

and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F_Record column.

General Erro	ors
GIC	No instrument deployed due to ice
GIM	Instrument malfunction
GIT	Instrument recording error; recovered telemetry data
GMC	No instrument deployed due to maintenance/calibration
GNF	Deployment tube clogged / no flow
GOW	Out of water event
GPF	Power failure / low battery
GQR	Data rejected due to QA/QC checks
GSM	See metadata
	Depth/Level Data Codes
GCC	Calculated with data that were corrected during QA/QC
GCM	Calculated value could not be determined due to missing data
GCR	Calculated value could not be determined due to rejected data
GCS	Calculated value suspect due to questionable data
GCU	Calculated value could not be determined due to unavailable data
GCU	Calculated value could not be determined due to unavariable data
Sensor Error	rs
SBO	Blocked optic
SCF	Conductivity sensor failure
SCS	Chlorophyll spike
SDF	Depth port frozen
SDG	Suspect due to sensor diagnostics
SDO	DO suspect
SDP	DO membrane puncture
SIC	Incorrect calibration / contaminated standard
SNV	Negative value
SOW	Sensor out of water
SPC	Post calibration out of range
SQR	Data rejected due to QAQC checks
SSD	Sensor drift
SSM	Sensor malfunction
SSR	Sensor removed / not deployed
STF	Catastrophic temperature sensor failure
STS	Turbidity spike
SWM	Wiper malfunction / loss
5 1111	Tiper manufection / 1055
Comments	
CAB*	Algal bloom
CAF	Acceptable calibration/accuracy error of sensor
CAP	Depth sensor in water, affected by atmospheric pressure
CBF	Biofouling
CCU	Cause unknown
CDA*	DO hypoxia (<3 mg/L)
CDB*	Disturbed bottom
CDF	Data appear to fit conditions
CFK*	Fish kill

CIP* Surface ice present at sample station

CLT* Low tide

CMC* In field maintenance/cleaning

CMD* Mud in probe guard CND New deployment begins CRE* Significant rain event

CSM* See metadata CTS Turbidity spike

CVT* Possible vandalism/tampering CWD* Data collected at wrong depth CWE* Significant weather event

13) Post deployment information

NP = no probe installed

NC = no calibration done

ND= no data

numbers in parentheses are used if standard differs from those stated.

14) Other Remarks

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

The Oneonta Slough holder was changed on 1/15/14 at 14:30. The new holder was moved down 5cm due to sonde out of water events.

Pond Restored:

The PR site is heavily influenced by rain, the rainy season in the TJR reserve is typically from November to April. The influences of these events can particularly be seen in SpCond and salinity data.

Boca Rio

The DO post for the 10/8 deployment was 73.5% data during this deployment was marked 1 SPC. It appears the probe was due for a membrane replacement as it was replaced by a different probe after this deployment.

Oneonta Slough

The same pH probe was used for the two deployments below. After the 5/20 deployment it was reconditioned and soaked in pH 4. The probe was replaced after the November deployment.

5/20/14 0945-6/17/14 0830 – pH flagged as suspect because it is much higher than rest of data.

11/4/14 1500-12/1/14 1315 - pH flagged as suspect because it is much higher than rest of data.

SpCond and salinity during the 12/1 deployment are marked 0 GSM CRE. Rain events during the month of December impacted values. Similar events can be seen at BR during this time.

b) Precipitation Data observed at the Tijuana River Estuary Reserve (mm) - Data is provisional and has not undergone final QAQC $\,$

Please see Tijuana River Meteorological Data for precipitation events

2014 Tijuana River Flow Information provided by the International Boundary Water Commission.

	DailyAvg m^3/s
Date	111 5/5
1/3/2014	0.07
1/4/2014	0.06
1/5/2014	0.02
1/13/2014	0.10
1/29/2014	0.02
1/30/2014	0.02
1/31/2014	0.44
2/1/2014	0.05
2/3/2014	2.29
2/4/2014	1.18
2/5/2014	1.00
2/6/2014	1.23
2/7/2014	1.89
2/8/2014	1.19
2/9/2014	1.04
2/10/2014	1.02
2/11/2014	0.52
2/12/2014	0.02
2/28/2014	5.40
3/1/2014	4.85
3/2/2014	2.66
3/3/2014	1.74
3/4/2014	1.41
3/5/2014	1.37
3/6/2014	1.26
3/7/2014	1.05
3/8/2014	0.63

3/9/2014	1.02
3/10/2014	1.03
3/11/2014	1.07
3/12/2014	0.72
3/13/2014	0.07
3/14/2014	0.02
3/27/2014	0.57
4/1/2014	2.38
4/2/2014	1.92
4/3/2014	1.29
4/4/2014	1.18
4/5/2014	1.15
4/6/2014	1.10
4/7/2014	1.07
4/8/2014	1.05
4/9/2014	1.04
4/26/2014	2.17
4/27/2014	1.03
4/28/2014	0.54
4/29/2014	0.04
6/18/2014	1.65
6/19/2014	1.08
7/14/2014	1.67
7/15/2014	1.03
7/16/2014	0.43
11/1/2014	2.87
11/2/2014	2.32
11/3/2014	1.19
11/4/2014	0.12
11/5/2014	0.09
11/21/2014	1.91
11/22/2014	1.73
11/23/2014	1.44
11/24/2014	1.21
11/25/2014	1.30
11/26/2014	1.04
12/2/2014	2.29
12/3/2014	3.40
12/4/2014	3.87
12/5/2014	3.12
12/9/2014	1.05
12/10/2014	1.03
12/11/2014	1.03

12/12/2014	12.21
12/13/2014	3.97
12/14/2014	3.37
12/15/2014	2.08
12/16/2014	2.44
12/17/2014	5.30
12/18/2014	3.05
12/19/2014	2.67
12/20/2014	2.47
12/21/2014	2.29
12/22/2014	2.31
12/23/2014	2.30
12/24/2014	1.62
12/25/2014	1.02
12/26/2014	0.95
12/27/2014	0.50
12/28/2014	0.23
12/29/2014	0.33
12/30/2014	0.77
12/31/2014	3.29