Waquoit Bay(WQB) NERR Water Quality Metadata (September -December 1999) Latest Update: October 5, 2000

I. Data set and Research Descriptors
1. Principal investigator
Chris Weidman, Ph.D.
Research Coordinator
PO Box 3092
Waquoit, MA 02536
508-457-0495 extension 105
wbnerr@capecod.net
Contact Person
David Giehtbrock, Research Assistant
PO Box 3092
Waquoit, MA 02536
508-457-0495 extension 109

2. Entry verification:

wbnerr@capecod.net

The data are uploaded in three file formats (each to separate files identified with the same file name but with unique extensions) from the $YSI\ 6000$

data logger to a PC with the YSI 6000 data transfer software (Kermit). Two of

these (PC6000 and ASCII text formats) are kept on file in the Waquoit Bay National Estuarine Research Reserve archive. The comma delimited format data

file is imported to the EXCEL spreadsheet program (version 5.0) where it is

processed according to standard National Estuarine Research Reserve Central Data

Management Office protocol using the CDMO Excel 5.0 macros. Each file contains

one complete month of data. This standard size has been achieved by concatenating (and truncating if necessary) shorter files of interrupted data

segments. File contents are examined for anomalies (e.g., sensor malfunction,

battery failure, spurious values, etc.) by visualization of data with the Ecowatch Software provided by YSI. Data requiring editing are noted and copies

of the graphs of raw data are saved at WBNERR. Data editing to CDMO protocol is

conducted in EXCEL. Missing data (data logger malfunction or maintenance periods) are represented by periods ".". Outliers (data values not within the

design range of the respective sensors except for turbidity and depth)

changed to periods. Data values recorded during deployment or retrieval (i.e., $\,$

when the instrument was out of the water or in the laboratory) are also changed

to periods. A record of changes is documented in the Data Anomalies section of

the metadata file. The monthly files are sent electronically by FTP to CDMO.

Copies of all files are retained at the reserve. The Research Assistant, David

Giehtbrock, performs all data management

3. Research Objectives:

The primary issue of concern for the Waquoit Bay ecosystem is the influence

of anthropogenic induced alterations by nitrogen enrichment. Waquoit Bay

receives nitrogen from several sources, including septic systems from which

leachate percolates into groundwater, which eventually enters the bay, atmospheric sources, runoff containing domestic and agricultural fertilizer and

animal waste, and runoff from roads. This elevated nitrogen loading to the bay

has resulted in eutrophic conditions that have contributed to alterations of

habitats in the bay. For example, thick mats of seaweeds now cover the bottom

where eelgrass meadows thrived in the 1970's. Unfortunately, there are few

definitive records of bay conditions during past decades, which makes it difficult to evaluate the rates of change. To facilitate future evaluation,

long-term records from data loggers are being compiled to track several parameters that describe conditions in this eutrophic system. Of particular

interest are measurements of dissolved oxygen and turbidity. These long-term

records will facilitate evaluation of changes in the ecosystem, which may come

about in response to continued development in the watershed. At present, residential areas are still served by private septic systems typically consisting of septic tanks and leach fields and there is ongoing non-industrial

commercial development, including construction of golf courses, cranberry bogs,

and retail shopping outlets. The long term records will be useful for evaluating the efficacy of remediation efforts intended to reduce the nitrogen ${\bf r}$

loading from these sources to Waquoit Bay.

4. Research methods:

The previous Research Coordinator determined that ${\tt Metoxit}$ Point would

provide a representative sample site of the bay based on data from the $\ensuremath{\mathtt{WBNERR}}$

BayWatcher Volunteers and data loggers (See Metadata 1998 for Waquoit Bay).

This new site represents a change in location for the base line site in 1999.

This site has the coordinates, 41o 34.131' N, 070o 31.294' W. The site was

given the designation of MP. An instrument was operated at this site starting

in September and ran through December 1999. No data were collected at the $\ensuremath{\text{the}}$

Reserve prior to September due to lack of personnel.

Logger sensors were $0.75~\mathrm{m}$ above the bottom to ensure they were above the

dense macro algal mat that covers the bottom of Waquoit Bay. The data logger

records measurements of temperature, specific conductivity, salinity, dissolved

oxygen, turbidity, water level, and pH at 30 minute intervals during deployment

periods of $\mbox{ roughly two weeks.}$ The sampling season is generally from $\mbox{March to}$

December. However, this is dependent on weather conditions and the operational

availability of the boat that serves as tender for the loggers.

Data logger deployment is achieved with a mooring set up that

75 pound anchor to which two lines are attached. One line is for a surface float

that marks the location. The other is shorter and terminates at a smaller float;

line length is such that the float remains submerged throughout tidal changes.

The data logger is attached to this line in a vertical position so that the

sensors (pointing downward) are suspended 75 cm from the bottom. This system was

chosen because local regulations prohibit installation of a more permanent

structure (e.g., a piling) and to minimize opportunities for vandalism.

During colder months, continuous operations are limited to about two weeks

due to limited battery life. In the warmer months, particularly June - September, biofouling of the sensors also limits continuous operation to about

two weeks even though battery performance during this period would allow longer $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

deployments.

After a deployment, each logger is brought back to the laboratory for a

post calibration check, data downloading, instrument and sensor cleaning, and

calibration. These procedures are carried out according to the methods described

in the YSI Operating Manual. Salinity sensors were calibrated with reference

seawater that had been previously analyzed with a Guildline salinometer at the

Woods Hole Oceanographic Institution. A 2 point calibration was accomplished

using pH buffers 7.0 and 10. The turbidity standard solutions were prepared from

formazin dilutions to 100 NTU. Temperature sensors were not calibrated. Oxygen $\,$

sensor membranes were inspected before and after each deployment. Oxygen sensor

membranes were replaced after each deployment per recommendation by YSI personnel. Performance was also evaluated during the post-retrieval check in

the laboratory test tank prior to post-calibration. After a membrane was replaced, calibration was not done until the membrane had been in place for at

least 24 hours. Final calibration was done immediately prior to instrument deployment.

5. Site location and character:

The Waquoit Bay National Estuarine Research Reserve (WBNERR) is located in

the northeastern United States on the southern shore of Cape Cod, Massachusetts.

About 8,000 people maintain permanent residency in Waquoit Bay's drainage area,

which covers parts of the towns of Falmouth, Mashpee, and Sandwich. During

summer months, the population swells 200 to 300%.

 $\ensuremath{\mathtt{WBNERR}}$ is representative of shallow coastal lagoons that occur from $\ensuremath{\mathtt{Cape}}$

Cod to Sandy Hook, New Jersey. WBNERR is within the Virginian biogeographic

province, on the transitional border (Cape Cod) between the Virginian and the

more northern Acadian biogeographic province.

Like many embayments located on glacial outwash plains, Waquoit Bay is

shallow, fronted by prominent barrier beaches (i.e., those of South Cape Beach

State Park and Washburn Island), and is backed by salt marshes and upland forests giving the Bay a salinity range of 0 - 30 ppt. Two narrow, navigable $^{\circ}$

inlets, reinforced with granite jetties, have been constructed through two

barrier beaches to connect Waquoit Bay with Vineyard Sound to the south. ${\tt A}$

third shallow and generally unnavigable inlet opened through the Washburn Island

barrier beach during Hurricane Bob in August 1991. It has not been reinforced

and its fate remains uncertain. The western shore of uninhabited Washburn

Island, with its low, steep bluffs and forested uplands, forms the western

boundary of the reserve. Tidal waters enter and leave the bay proper (and the

Reserve) via the Seapit and Eel rivers, which funnel tidal flows along the

western shore of Washburn Island, through Eel Pond and out to Vineyard Sound.

Dense housing developments cover the two peninsulas that form the western $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

shore of the two rivers. Although the developments are outside of the Reserve

boundaries, nitrogen in discharges from their septic systems (which flows ultimately into the bay via groundwater) and in fertilizer run-off from their

lawns has significant effects on the functioning of the Waquoit Bay ecosystem.

The impacts of these effects have been a subject of study at the Reserve since

its designation in 1988. The subwatersheds are developed to different degrees,

some are totally built out with residential housing, some moderately developed,

and some are still pristine with no development. This configuration

robust experimental designs (e.g., substitution of space for time) which augment

results from work done within and near to the Reserve.

At the northern end of the bay, coastal bluffs of glacial till rise $30 \,\, \mathrm{feet}$

above sea level, marking the highest elevation within the Reserve. The northern

basin of the bay is its deepest area, $2.3\ \mathrm{m}$ mean low water, albeit much of the

remainder of the bay is only slightly shallower, averaging roughly 1.6 m. Bourne, Bog, and Caleb ponds are freshwater kettle hole ponds on the northern

most shore of the bay. As components of the same sub-watershed, they have a

common albeit minor freshwater outflow into the bay's northern basin via

narrow channel through a brackish marsh. Although this flow is small, over the $\ensuremath{\mathsf{N}}$

centuries it has created a significant delta of coarse sand that overlies much

finer sediments found at comparable offshore distances elsewhere. The source of

this sand is the sandy beach through which this fresh water discharge $\ensuremath{\mathsf{must}}$

travel.

To the east and south, land in other subwatersheds surrounds several salt

and freshwater ponds, including Hamblin and Jehu Ponds, brackish salt ponds that

are connected to the bay by the tidal waters of Little and Great rivers, respectively. The shorelines of the ponds are developed with residences that

are occupied both seasonally and year round. Hamblin Pond and Little River are

components of one subwatershed, and Jehu Pond and Great River are elements of a

separate subwatershed. Further south lies Sage Lot Pond. It is in the least

developed subwatershed which also contains the barrier beach and salt \max

ecosystem of the reserve's South Cape Beach State Park. To the east of Sage Lot

Pond and within the same subwatershed, lies the highly brackish Flat Pond. It

receives minimal tidal flows of salt water from Sage Lot Pond through a narrow,

excavated channel. Most of the water flowing in to Flat Pond is groundwater and

run off, both of which maybe affected (e.g., nutrients, pesticides, bacteria) by

an adjacent golf course and near-by upper-scale residential development. The largest source of freshwater to Waquoit Bay is the Quashnet/Moonakis River.

Although named "river", this and the reserve's Childs River might be more appropriately described as "rivulets". A component of yet another subwatershed,

it originates in Johns Pond situated five miles north of the bay and traverses

forests, cranberry bogs, residential areas, and the Quashnet Valley Golf Course $\,$

before entering the bay near the southern part of the northern basin. The river

is called the Quashnet where it flows within the town of Mashpee, and the Moonakis as it enteres the brackish estuary at the river's mouth, in the town of

Falmouth. Quashnet will be used hereafter to refer to the entire river.

The Quashnet River is the only component of the Waquoit Bay estuary system

that has sufficient numbers of coliform bacteria to cause it to be closed, at

times, to shell fishing. The source(s) of this bacteria is unknown. The Quashnet

River delivers significantly less nitrogen to Waquoit Bay than does the Childs

River, which lies to the west and also originates in Johns Pond.

The Childs River is the second largest input of freshwater to the bay. A

component of another subwatershed, it runs through densely developed residential areas. The Childs River subwatershed receives the highest nitrogen

loading and is the largest nitrogen contributor of all the subwatersheds in the

Waquoit Bay system.

Another, albeit smaller, source of freshwater is the discharge of $\ensuremath{\mathsf{Red}}$ Brook

through brackish marshlands into Hamblin Pond. Additional freshwater enters the

bay elsewhere through groundwater seepage, precipitation and the flows of small

brooks. A significant groundwater flow enters the eastern end of the mooring

basin at the head of the bay. There is relatively little surface water runoff

entering directly into the bay due to the high percolation rates of Cape $\operatorname{Cod's}$

coarse, sandy soils.

A data logger is located in Waquoit Bay near the southern tip of a peninsula of land bordering the western mouth of the Quashnet River at 410

34.131' N, 0700 31.294' W and is identified as "Metoxit Point" or MP. This site

is influenced by the freshwater discharge from the Quashnet River. The Ouashnet

River watershed runs the gamut of highly developed to pristine forest. This site

is also situated within a natural gyre that circulates water in the middle of

the bay. Salinity ranges from 27.3 ppt to 31.9 ppt. Tidal Range: Spring Mean

(m) 0.57 Neap Mean (m) 0.33. The latitude is 41o34.131' N and the longitude is

quality monitoring program in 1999. An instrument will be moored at this site

for the long term, in order to collect baseline measurement of "ambient" conditions within Waquoit Bay. This information will be considered to represent

the general conditions within the bay. The site is well flushed by tides, is

1.8-2.5 m deep, and is in an area that is minimally disturbed by routine activities on the bay (e.g. boat traffic, shell fishing, etc.).

Knowledge of the degree of mixing in Waquoit Bay was originally derived

from $\mbox{measurements}$ made by reserve staff and from data obtained by the $\mbox{reserve's}$

volunteer water quality monitoring group, the Waquoit BayWatchers, who have

collected depth profiles of Waquoit Bay water quality since 1993. Subsequent

research by reserve staff has revealed that lateral mixing has considerable $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

influence because tidal currents follow a general course through the bay. This

results in an overall structure to horizontal patterns of water quality characteristics. The pattern it produces is a gyre in the central portion of the

bay whereby currents follow a circular pattern in an anticlockwise direction

around a central area that exhibits reduced exchange with the remainder of the $\ensuremath{\mathsf{C}}$

bay. The flushing rate within the gyre is diminished when compared with other

areas of the bay. The location of the gyre meanders slightly, apparently under

the influence of tides and wind. The MP site is more consistently near the $\,$

outer regions of the gyre, that is, more frequently in the circular current, and

those data are less affected by the meandering of the gyre. (Relocating the

logger to the central area of the gyre is impractical because that area if

frequented by boat traffic and the logger mooring would be a hazard to navigation.)

6. Data collection period

Data collection occurred at site Metoxit Point (MP) from September 20, 1999

15:00:00 to December 20, 1999 10:30:00.

7. Associated researchers and projects None to report.

8. Variable sequence, range of measurements, units, resolution, and accuracy:

YSI 6000 data logger

Variable Name Accuracy	Range of Measurements (units)	Resolution
Date NA	1-12, 1-31, 00-99 (Mo,Day,Yr)	1 month, 1 day, 1 year
Time NA	0-24, 0-60, 0-60 (Hr, Min, Sec)	1 hr, 1 min, 1s
Temp 0.15C	-5 to 45 (C)	0.01 C +/-
SpCOND reading+	0-100 (mS/cm)	0.01mS/cm +/-0.5% of
		0.001
mS/cm Salinity reading	0-70 Parts per thousand (ppt)	0.01ppt +/-1.0% of
~~~~		or 0.1 ppt (whichever is
greater) DO @air sat.	0-200 (% air Saturation)	0.1% @air sat. +/-2%
DO @air sat.	200-500 (% air Saturation) 0.1	% @air saturation +/-6%
DO 0.2mg/l	0-20 (mg/l)	0.01mg/l +/-

```
0.01 mg/1
                                                          +/-
DO
                20-50 \text{ (mg/1)}
0.6mq/1
Depth (shallow) 0-9.1 (m)
                                                 0.001m
                                                                 +/-
0.018m
Нq
                2-14 units
                                                 0.01units
                                                                 +/-
0.2units
Turb
                0-1000 NTU
                                                 0.1NTU
                                                                +/-5% of
reading
                                                 or 2 NTU (whichever is
greater)
9. Coded variable code definitions
     The file names are labeled according to site identifier code, month,
year
(e.g., mp0999).
Identifier codes are; Metoxit Point, Waquoit Bay, mp = a site about 1200
north of the cb site
(see Metadata Waqoit Bay 1998). Mp was the only site where a data logger
operated during 1999.
10. Data anomalies
October 1999
Metoxit Point
The following were small negative turbidity values, possibly due to a
small
calibration error. These data were not deleted.
     10/6 15:30, 16:00, 18:30, 19:30, 21:00-23:30
     10/7 0:00-9:00, 16:30-18:00, 23:30
     10/8 0:30, 1:30, 2:30, 3:00, 5:00, 5:30, 22:30, 23:00, 23:30
     10/9 0:00-14:00
     10/10 10:00-11:30, 23:00, 23:30
     10/11 0:00-4:30, 7:00, 18:00, 20:30, 21:00, 22:30
     10/12 2:30-4:00, 5:00, 6:30
     10/13 1:00-8:30, 9:30-10:30
     10/14 21:30:00
     10/16 5:00-5:30, 7:00-8:30, 10:30-13:30, 14:30-15:00, 18:30, 19:00,
20:00,
21:00-23:30
     10/17 0:00-11:30, 12:30, 13:00, 15:00, 16:00-17:00, 19:00-20:00,
22:00-
23:00
     10/18 0:00, 1:30, 2:30, 4:30, 6:00-8:00
     10/20 12:30-13:30, 15:00, 15:30 19:00-20:30, 21:30-23:30
     10/21 0:00-1:00, 3:30, 6:30-11:30, 14:00-15:00, 17:30-18:30, 20:30,
22:00-
23:30
     10/22 0:30, 1:00, 2:00-17:30, 18:30-22:30, 23:30
     10/23 0:30-11:30
     10/24 20:00
```

#### 11. Missing data

Data loggers were not operated until September 20.

The following data are missing during the period September 1 through December 31, 1999:

September 1999:

MP: No data were collected until September 20.

October 1999:

MP: No data were collected between  $10/28\ 16:30$  and  $10/29\ 10:00$  due to a

loss of battery power.

November 1999:

MP: No data were collected between 11/19 14:00 and 11/30 23:30.

an apparent power malfunction. It is suspected that the logger took some kind

of sharp blow during the deployment, causing the circuitry to malfunction.

December 1999:

MP: No data was collected between  $12/01\ 00:00$  and  $12/03\ 14:00$ . Please note

comments

for November. Loss of data in November continued until 12/03 14:00. No data collected from 12/20 11:00 through 12/31 23:30. Period for collection ended at this time.

#### 12. Other remarks/notes

As suggested by the previous research coordinator, the baseline site was  $\ensuremath{\mathsf{was}}$ 

moved to 41o  $\,$  34.131' N 070o  $\,$  31.294' W. Data were collected at this site from

September 20, 15:00, through December 20, 10:30.