Waquoit Bay (WQB) NERR Water Quality Metadata

January – December 2023 Latest Update: 4/11/2024

Note: This is a provisional metadata document; it has not been authenticated as of its download date. Contents of this document are subject to change throughout the QAQC process and it should not be considered a final record of data documentation until that process is complete. Contact the CDMO (cdmosupport@baruch.sc.edu) or reserve with any additional questions.

I. Data Set and Research Descriptors

1) Principal investigator(s) and contact persons -

• Address:

Waquoit Bay National Estuarine Research Reserve PO Box 3092 131 Waquoit Highway Waquoit, MA 02536 Website: http://www.waquoitbayreserve.org

• Contact persons:

Theophilos (Theo) Collins, Research Associate

E-mail: <u>Theophilos.j.collins@mass.gov</u> Phone: 774-255-4272; 774-255-4275

2) Entry verification -

Deployment data are uploaded from the YSI data logger to a personal computer with Windows 7 or newer operating system. Files are exported from EcoWatch in a comma-delimited format (.CDF), EcoWatch Lite in a comma separated file (CSV) or KOR Software in a comma separated file (CSV) and uploaded to the CDMO where they undergo automated primary QAQC; automated Depth/Level corrections for changes in barometric pressure (cDepth or cLevel parameters); and become part of the CDMO's online provisional database. All pre- and post-deployment data are removed from the file prior to upload. During primary QAQC, data are flagged if they are missing or out of sensor range. The edited file is then returned to the reserve for secondary QAQC where it is opened in Microsoft Excel and processed using the CDMO's NERROAQC Excel macro. The macro inserts station codes, creates metadata worksheets for flagged data and summary statistics, and graphs the data for review. It allows the user to apply QAQC flags and codes to the data, remove any overlapping deployment data, append files, and export the resulting data file for upload to the CDMO. Upload after secondary QAQC results in ingestion into the database as provisional plus data, recalculation of cDepth or cLevel parameters, and finally tertiary QAQC by the CDMO and assimilation into the CDMO's authoritative online database. Where deployment overlap occurs between files, the data produced by the newly calibrated sonde is generally accepted as being the most accurate. For more information on QAQC flags and codes, see Sections 11 and 12.

3) Research objectives -

For the NERR System-Wide Monitoring Program (SWMP), the YSI EXO data loggers are programmed to record water quality parameters every 15 minutes. A total of four SWMP sites were located in the Waquoit Bay estuarine system during 2015. These four are: 1) Metoxit Point (MP), in operation since 1998, is located in the middle of Waquoit Bay's main basin; 2) Menauhant (MH), in operation since March 2001, is located adjacent to Eel Pond Inlet on Vineyard Sound – one of the two tidal inlets into the Waquoit Bay estuary; 3) Child's River (CR), in operation since May 2002, located near the head of the tidal section of Child's River— one of the two main surface fresh water sources to Waquoit Bay; and 4) Sage Lot (SL), in operation since May 2002, located in Sage Lot Pond—a tidal pond surrounded by salt marsh and barrier beach, possessing one of the bay's few remaining eelgrass stands.

The main purpose of the SWMP water quality monitoring program is to aid Waquoit Bay NERR in one of its priority missions - to perform as a natural laboratory and platform for coastal and estuarine research. The long term, continuous detailed monitoring of the estuary's basic hydro-physical parameters is an essential tool and context for any research activities located here. Besides this overarching mission, there are also several specific research interests. One primary issue for the Waquoit Bay ecosystem is the influence of anthropogenic induced alterations by nitrogen enrichment. Waquoit Bay receives nitrogen from several sources, including but not limited to septic systems (their leachate percolates into groundwater which then enters the bay), run off from roads, run off containing domestic and agricultural fertilizer and animal waste, and atmospheric sources. This elevated nitrogen loading to the bay has resulted in enhanced eutrophication that has contributed to the alteration of the bay's habitats. For example, thick mats of macroalgae now cover the bottom where eelgrass meadows thrived in the 1970's. Unfortunately, there are few definitive records of the bay's water quality conditions during that period, which makes it difficult to evaluate the rates of change. To facilitate future evaluation, long-term records from SWMP can be used to track water column conditions. Of particular interest, in this regard are measurements of dissolved oxygen (DO) and turbidity, as well as dissolved nitrogen and chlorophyll concentration (this data is available by contacting the reserve). Such records will facilitate evaluation of changes which may come about from a continuation of watershed alteration that result from current development patterns (i.e., non-sewered residential areas served by private septic systems typically consisting of septic tanks and leach fields) as well as non-industrial commercial development, such as golf courses, cranberry bogs, and retail shopping outlets. The records will be useful for evaluating the efficacy of remediation efforts intended to reduce the nitrogen loading from these sources to Waquoit Bay.

Another focus of long-term research interest is the detection of climate change and the determination of its effects on the estuarine environment. Characterizing the variability of the various water column parameters, such as their scale, magnitude, and frequency, is an important aspect of the estuarine ecosystem that is affected by climate change. Related to this focus is an interest in the impact of storms (hurricanes and northeasters) and other extreme meteorological events on the estuary. For example, what temperature and wind field thresholds exist that might bring about or trigger certain conditions within the bay? The observations recorded by the SWMP will allow for these types of studies.

4) Research methods -

Multi-parameter YSI EXO2 data loggers, hereafter referred to as sondes, are deployed at each permanent water quality monitoring station at the Waquoit Bay Reserve. Since in-situ instrumentation can only record conditions at a specific location, permanent monitoring stations for SWMP are chosen to be representative of the overall estuary. This is difficult in practice since estuaries by their very definition are coastal regions where large physical, chemical, and biological variations tend to occur in space and time, so that often no particular location within the system is "typical" of the overall system. Establishing several stations can overcome this problem, and as of 2002 four permanent stations were established in the Waquoit Bay estuaries. Our current SWMP stations are situated to represent, as much as possible, the diversity of the estuary and its inputs/outputs. Additional details concerning the station characteristics are discussed in the next section.

The YSI sondes measure and record ambient water temperature, specific conductivity (and calculate salinity), dissolved oxygen (mg/L and % saturated), turbidity (FNU), Chlorophyll-a (ug/L) water level (m), and pH at 15 minute intervals during deployment periods extending for approximately four weeks. Note that the pressure sensors currently in use are non-vented and so variations in atmospheric pressure are recorded as changes in water depth (atmospheric data are available from our SWMP meteorological station (as of January 2002) and other nearby meteorological observatories), so it is possible to make this correction to the depth data (approximately +1 cm of depth is equal to +1 mb of air pressure), for increased accuracy. Also, at the Metoxit Point site (from 12/2000 to present), Child's River site (from 3/2003 to present), Menauhant site (from 7/2006 to present), and our Sage Lot site (from 6/2006 to present) we have been using an optic chlorophyll fluorescence sensor.

Multi-parameter YSI sondes are deployed and retrieved every four weeks. The "old" sonde is retrieved, and a "new" replacement sonde is deployed immediately so that ideally no record gap occurs. The four-week deployment duration is constrained by a combination of battery life and fouling of the optic sensors during the warm summer months. Prior to deployment (usually within 24 hrs), each instrument is checked and its sensors re-

calibrated using standard YSI (Operating Manual) protocols. Similarly, after a deployment, each sonde is brought back to the laboratory for a post-deployment check, data downloading, instrument and sensor cleaning. The conductivity sensors are calibrated with 50.00 mS/cm YSI standard. The pH sensors are calibrated with 7.0 and 10.0 pH standard solutions (2-point calibrations). The turbidity standard used is 126.0 NTU/124.0 FNU, and distilled water (DI) for 0 NTU/FNU. Temperature sensors are checked periodically against a calibrated mercury thermometer. The chlorophyll probe is calibrated on a 2-point calibration with distilled water (DI) and a Fluorescent Red Dye (Rhodamine WT) at a 0.5 mg/L concentration. See the Chlorophyll Qualifier in Sensor Specifications section below regarding chlorophyll fluorescence accuracy. As another check on instrument performance, in-situ measurements of water temperature, DO, salinity, specific conductance, and pH are made using a handheld YSI device (pre-December 2016: YSI 650; post-December 2016: YSI EXO1) at deployment/retrieval times. Deployment/retrieval in-situ data is available at the end of this document.

In July 2016, we upgraded the Metoxit Point site from the 6600-series sondes to the EXO2 sondes. In April 2017, the Childs River site was also upgraded from the 6600-series sondes to the EXO2 sondes. In December 2017, we upgraded the Menauhant site from the 6600-series to the EXO2 sondes. Sage Lot Pond transitioned to the EXO2 in July 2018.

Two types of silos house the YSI sondes during their deployment. One type for dock side stations (Menauhant and Childs River) and the other for open water stations away from shore structures (Metoxit Point and Sage Lot). The Menauhant site, located at a yacht club dock, is adjacent to a tidal inlet, and the Child's River site, located at commercial marina and boat yard, is adjacent to the upper reaches of a tidal river.

For open water, a two-part structure has been designed consisting of a submerged fixed tower and a separate removable silo apparatus that sleeves over the fixed tower. The Metoxit Point and Sage Lot silos are constructed so that the sonde's sensor package is 0.5 m off the bottom. The removable silo apparatus can be lifted on and off the tower for inspection, cleaning or other maintenance. The sondes are deployed into the removable silos consisting of open-ended vertically mounted 4" PVC pipe (each silo is perforated in its lower portion around the business end of the sonde). The fixed tower structure consists of a vertical reinforced concrete filled 3" PVC pipe about 1.3 meters in height extending upward from a 300 lb cast reinforced concrete base (30" in diameter and 6" thickness) anchored into the bottom by a reinforced concrete filled 4" PVC pipe about 1 m in length. The whole structure is somewhat reminiscent of large "child's toy top".

For dock-side locations, the silo apparatuses are a more typical type – a single PVC section (4" ID) mounted vertically onto a pier piling or bulkhead. The base of these silos is also ventilated with large holes (1.0" diameter). All silos are painted with antifouling paint at the beginning of the spring season, and periodically checked and scrubbed during the summer season.

A YSI WaterLog Storm 3 (or insert Sutron Sat-Link2) transmitter was installed at the Menauhant Yacht Club station in November 2020 to transmit data to the NOAA GOES satellite, NESDIS ID #3B030074. Before this, between July 2006 – November 2020, the transmitter was a Sutron Sat-Link2 under the same NESDIS ID#. The transmissions are scheduled hourly and contain four (4) data sets reflecting fifteenminute data sampling intervals. Upon receipt by the CDMO, the data undergoes the same automated primary QAQC process detailed in Section 2 above. The "real-time" telemetry data become part of the provisional dataset until undergoing secondary and tertiary QAQC and assimilation in the CDMO's authoritative online database. Provisional and authoritative data are available at www.nerrsdata.org.

5) Site location and character –

The Waquoit Bay National Estuarine Research Reserve (WBNERR) is located in the northeastern United States on the southern coast of Cape Cod, Massachusetts. About 8,000 people maintain permanent residency in Waquoit Bay's drainage area, which covers parts of the towns of Falmouth, Mashpee, and Sandwich. During summer months, the population swells 2-3 times with the greatest housing concentrations immediate to the coastline (water views and frontage). In addition, the upper portions of the watershed include a military base, Otis Air Force Base and the

Massachusetts Military Reservation, portions of which have been designated by the EPA as Superfund sites due to past practices of dumping jet fuel and other volatile groundwater contaminants.

WBNERR's estuaries are representative of shallow tidal lagoons that occur from Cape Cod to Sandy Hook, New Jersey. WBNERR is within the northern edge of the Virginian biogeographic province, on the transitional border (Cape Cod) with the Acadian biogeographic province to the north and east. Like many embayments located on glacial outwash plains, Waquoit Bay is shallow (< 5 m), fronted by prominent barrier beaches (i.e., those of South Cape Beach State Park and Washburn Island), and backed by salt marshes and upland coastal forests of scrub pine and oak. Two narrow, navigable inlets, reinforced with granite jetties, pass through two barrier beaches to connect Waquoit Bay with Vineyard Sound to the south. A third shallow and generally unnavigable inlet opened through the Washburn Island barrier beach during Hurricane Bob in August 1991. This shallow inlet closed in February 2002.

Bottom sediments in the bay are organic rich (C organic conc. ~ 3-4%) silts and medium sands. Sediment cores obtained in summer of 2002 indicate that the depth of these estuarine sediments is up to 9 m thick in places. Dating work on these sediment cores suggests that the Waquoit Bay basin has been inundated by the sea for about 5000 years, and sediment accumulation rates were estimated to be between 2-10 mm/yr, with higher rates in the upper 1 m of sediments (Maio et al. 2016). Thick (up to 0.3 m) macroalgae mats overlie much of the bottom of the bay, and largely consist of species *Cladophora vagabunda*, *Gracilaria tikvahiae*, and *Enteromorpha* spp. The dominant marsh vegetation in Waquoit Bay is *Spartina alterniflora* and *Spartina patens*. Dominant upland vegetation includes mixed forests of red oak, white oak, and pitch pine, and other shrubs and plants common to coastal New England. Land-use in the bay's watershed is about 60% natural vegetation, but the remaining land is largely residential housing, with some commercial (retail malls) development, and minor amounts of agriculture (~3%; e.g., cranberry bogs).

Dense housing developments cover the two peninsulas that form the western shore of the Waquoit Bay estuarine system. Although the developments are outside of the Reserve boundaries, dissolved nitrogen in discharge from the septic systems (via groundwater) and in fertilizer run-off from lawns has significant effects on the functioning of the Waquoit Bay ecosystem. These impacts have been a primary subject of study at the Reserve since its designation (1988). One outcome of this research has been the delineation of sub-watersheds within the overall drainage area for Waquoit Bay, of which WBNERR is a small part. This knowledge allows for the design of experiments based on the spatial variation of nutrient loading and other land-use related impacts.

At the northern end of the bay, an area comprising a separate sub-watershed, coastal bluffs of glacial till rise 30 feet above sea level. The northern basin of the bay, just below these bluffs, is its deepest area (approximately 3 m MLW), while much of the remainder of the bay is about 1.5 m. Bourne, Bog, and Caleb Ponds are freshwater kettle hole ponds on the northern-most shore of the bay. As components of the same sub-watershed, they have a common albeit minor freshwater outflow into the bay's northern basin via a narrow channel through a brackish marsh. To the east and south, other sub-watersheds surround several tidal and freshwater ponds, including Hamblin and Jehu Ponds, brackish salt ponds that are connected to the main bay by the tidal waters of Little and Great Rivers, respectively. The shorelines of the ponds are developed with residences that are occupied both seasonally and year round. Hamblin Pond and Little River are components of one sub-watershed, and Jehu Pond and Great River are elements of a separate sub-watershed. Further south lays Sage Lot Pond. It is in the least developed subwatershed and contains a barrier beach and salt marsh ecosystem of the reserve's South Cape Beach State Park. To the east of Sage Lot Pond and within the same sub-watershed, lies the highly brackish Flat Pond. It receives minimal tidal flows of salt water from Sage Lot Pond through a narrow, excavated, and culverted channel. In the spring of 2008 two (2) channel culverts were replaced, one with a bridge and the second with a wider, less restrictive culvert to increase tidal flushing in the pond. The preponderance of the input to Flat Pond is groundwater and run off, both of which are likely affected (e.g., nutrients, pesticides, bacteria) by an adjacent golf course and nearby luxury residential development.

The largest source of surface freshwater to Waquoit Bay is the Quashnet/Moonakis River. Although named "river", this and Child's River are more appropriately described as "streams" because of their small channels and discharge ~1.0 CFS. A component of yet another sub-watershed, the Quashnet River originates in Johns Pond

situated north of the bay and traverses forests, cranberry bogs, residential areas, and the Quashnet Valley Golf Course before entering the bay near the southern "boundary" of the northern basin. ("Quashnet" applies to that portion of the river within the town of Mashpee, and "Moonakis" refers to the brackish estuary at the river's mouth, in the town of Falmouth. Quashnet will be used hereafter to refer to the entire river.) The Quashnet River's tidal portion has enough coliform bacteria to cause it to be closed to shell fishing most of the time. The source(s) of these bacteria (human or avian) is currently unknown.

The Childs River is the second largest input of surface freshwater to the bay. A component of another sub-watershed, it runs through densely developed residential areas. The Childs River sub-watershed receives the highest nitrogen loading and is the largest nitrogen contributor to the Waquoit Bay system of all the sub-watersheds. In the upper tidal portions of the river the highest nutrient and chlorophyll levels and the lowest dissolved oxygen readings of any region in the bay have been recorded and so this location represents an end-member for looking at anthropogenic inputs and impacts on the system. Another, albeit smaller, source of freshwater to Waquoit Bay is the discharge of Red Brook through brackish marshlands into Hamblin Pond. Additional freshwater enters the bay elsewhere through groundwater seepage (perhaps up to 50% of all freshwater input into the bay), precipitation, and the flows of smaller brooks. There is relatively little surface water runoff entering directly into the bay due to the high percolation rates of Cape Cod's coarse, sandy soils.

Knowledge of the homo/heterogeneity of the water masses in Waquoit Bay was originally derived from measurements made by reserve staff and from data obtained by the reserve's volunteer water quality monitoring group, the Waquoit BayWatchers who have collected depth profiles of Waquoit Bay water quality since 1993. Subsequent research by reserve staff has revealed that lateral mixing has considerable influence because tidal currents follow a general course through the bay. This results in an overall structure to horizontal patterns of water quality characteristics. The pattern it produces is a gyre in the central portion of the main bay whereby currents follow a generally counterclockwise flow around a central area that exhibits reduced exchange with the remainder of the bay. The flushing rate within the gyre is diminished when compared with other more peripheral areas of the bay. The location of the gyre meanders slightly, apparently under the influence of tides and wind. Due to the shallow conditions, restricted tidal inlets, and low amplitude tidal forcing of Vineyard Sound here (tides are semi-diurnal with a range ~1 m) water levels in the bay are also strongly influenced by wind forcing. Southerly winds increase tidal heights and advance the phase of the flood and retard the phase of ebb. Northerly winds have the opposite effect.

Site name	Metoxit Point (MP)		
Latitude and longitude	41° 34′ 8.04″ N, 70° 31′ 17.76″ W		
Tidal range (meters)	~ 0.90 m (based on 2014-2016 data)		
Salinity range (psu)	13.7 – 32.1 (based on 2014 data)		
Type and amount of freshwater input			
Water depth (meters, MLW)	2.0 (estimated)		
Sonde distance from bottom (meters)	~ 0.5 m		
Bottom habitat or type	Soft organic rich anoxic mud overlain by thick algal (Cladophora) mats		
Pollutants in area			
Description of watershed	This site is located in the main basin of Waquoit Bay, and was selected to be within or near the outer regions of the gyre (described above), and more or less represents "typical" water mass conditions and		

residence times for the bay. The station is approximately a half mile
from shore, well flushed and mixed by tides, and is exposed to strong
fetch from the south. Because of this, it has been observed that under
sustained southerly winds (over 20 kts), this site experiences elevated
turbidity due to sediment suspension.

Site name	Menauhant Yacht Club (MH)	
Latitude and longitude	41° 33′ 9.36" N, 70° 32′ 54.60" W	
Tidal range (meters)	1.55 (based on 2014 – 2016 data)	
Salinity range (psu)	23.3 – 32.5 (based on 2022 data)	
Type and amount of freshwater input		
Water depth (meters, MLW)	1.1 (estimated)	
Sonde distance from bottom (meters)	0.5	
Bottom habitat or type	Sands and gravels	
Pollutants in area		
Description of watershed	The Menauhant station, installed at a dock piling in March 2001, is located within the Eel Pond Inlet at the Menauhant Yacht Club docl. Eel Pond Inlet is the westernmost of the two main tidal inlets into the Waquoit bay system. Entering waters represent the marine endmember while the outflows represent the final product of estuarine water mass modification and export to shelf waters. Due to turbulent tidal flow within the inlet, conditions are vertically well-mixed, and the site can be maintained year-round even through ice-over conditions affecting the rest of the bay. Strong south to southeast (onshore) winds tend to product turbidity events at this site from wave-induced suspension of fine sediments and organic material in the upstream near-shore zone. While these types of turbidity events are localized to windward near-shore areas in the bay, the transport of sediments at inlet mouths during such wind events seems to be a common, and perhaps dominant sedimentation process in the whole estuarine system.	

Site name	Child's River (CR)
Latitude and longitude	41° 34' 48.47" N, 70° 31' 49.87" W
Tidal range (meters)	1.3 (based on 2014 – 2016 data)
Salinity range (psu)	14.8 – 30.6 (based on 2014 data)

Type and amount of freshwater input	
Water depth (meters, MLW)	1.2 (estimated)
Sonde distance from bottom (meters)	0.5
Bottom habitat or type	Fine, organic-rich muds
Pollutants in area	
Description of watershed	The Childs' River station (installed in May 2002), is located on a dock piling at East Falmouth Marina near the upper tidal reaches of the Child's River – one of the two main surface fresh water sources to Waquoit Bay (see general description of Waquoit Bay above). This location is very strongly stratified, characterized by a salt wedge with fresher river water overlying saline ocean water. Vertical salinity ranges can vary from 0-10 ppm at the surface to more than 30 ppm just 1m below. The sonde sensors are usually well-within the salt wedge portion of the water column. Nonetheless, this location is also our freshwater SWMP site. Child's River also represents the most terrigenous and anthropogenically-impacted SWMP site. Monthly water quality samples collected near this location for over a decade show very high chlorophyll concentrations during the warmer months and more recent dissolved nutrient records show very high nutrient loads. Boat traffic at the marina likely leads to increased turbidity during the boating season as well due to propwash disturbing the bottom sediments. During the winter (mid-December through March), marina staff install aerators at the end of each pier to prevent ice damage and restrict access to the site, so we do not deploy sondes or collect samples during these months.

Site name	Sage Lot (SL)
Latitude and longitude	41° 33'15.12" N, 70° 30'30.20" W
Tidal range (meters)	0.99 (based on 2014 – 2016 data)
Salinity range (psu)	24.22 – 32.28 (based on 2014 data)
Type and amount of freshwater input	
Water depth (meters, MLW)	1.15 (estimated)
Sonde distance from bottom (meters)	0.5
Bottom habitat or type	Fine organic-rich muds
Pollutants in area	
Description of watershed	The Sage Lot station was installed in May 2002 in a deep portion of Sage Lot Pond, a small sub-estuary of Waquoit Bay surrounded by salt

marsh and the back side of a barrier beach. Its small watershed is the least developed of all of Waquoit Bay's sub-watersheds, making it theoretically the least impacted sub-estuary. Until the early 2020s, Sage Lot Pond possessed one of the few remaining eelgrass beds in the Waquoit Bay system. The site is considered to represent the opposite endmember of nutrient loading and human impacts in contrast to the Child's River site. However, Sage Lot Pond is hydrologically connected to an upstream brackish source – Flast Pond – via a series of tidal creeks, drainage ditches, and culverts. Flat Pond itself borders a country club and golf course, so it is possible that Sage Lot Pond would also be impacted. The marshes around Sage Lot pond are also bisected by a paved road and a walking trail, both of which see heavy volumes of vehicle and foot traffic during summer months.

SWMP station timeline [Instructions/Remove: Include all stations currently in-use and any decommissioned sites in the table below. Include the site code (2 letter code), SWMP status P (primary) or S (secondary), the station name, location (latitude/longitude), active dates (note if current). For decommissioned sites include information on why the station was decommissioned and relevant notes.]

Station code	SWMP status	Station name	Location	Active dates	Reason decommissioned	Notes
wqbcrwq	Р	Child's River	41° 34' 48.47" N, 70° 31' 49.87" W	05/01/2002 00:00 -	NA	NA
wqbslwq	Р	Sage Lot	41° 33' 15.12 N, 70° 30' 30.20 W	05/01/2002 00:00 -	NA	NA
wqbmhwq	Р	Menauhant	41° 33' 9.36 N, 70° 32' 54.60 W	03/01/2001 00:00 -	NA	NA
wqbmpwq	P	Metoxit Point	41° 34' 8.04 N, 70° 31' 17.76 W	11/01/1998 00:00 -	NA	NA
wqbcbwq	P	Central Basin	41° 33' 55.80 N, 70° 31' 15.96 W	10/01/1995 00:00 - 12/01/1998 00:00	MP was considered more representative of the average water quality dynamics in Waquoit Bay. The MP site is located outside an anticlockwise gyre, where water exchange is reduced.	
wqbctwq	P	Adjacent to Central Basin	41° 33' 55.80 N, 70° 31' 15.96 W	09/01/1998 00:00 - 10/01/1998 00:00	Considered a "rover" site. Never designed to be longterm	
wqbnbwq	Р	North Basin	41° 34' 43.68 N, 70° 31' 25.32 W	10/01/1995 00:00 -	Considered a "rover" site. Never designed to be long- term	

				12/01/1997 00:00		
wqbnswq	P	North Basin Surface	41° 34' 43.68 N, 70° 31' 25.32 W	07/01/1997 00:00 - 12/01/1997 00:00	Considered a "rover" site. Never designed to be long- term	

6) Data collection period -

SWMP water quality monitoring in Waquoit Bay was initiated in 1995. Several different pilot sites (i.e., North Basin and Central Basin) were occupied for varying durations before settling on our first permanent long term site at Metoxit Point in summer 1998. The Menauhant site was our second permanent station and began operation in March 2001. Sage Lot and Childs River sites began operation in May 2002.

In 2021, year-round data were collected at the Childs River and the Menauhant station. Due to interference from an aerator system at the marina on Childs River, the winter data are marked as suspect. Due to icy conditions during the winter months, the Metoxit Point and Sage Lot stations were not occupied from mid-December 2020 through the last week in March 2021. In preparation for the winter (before the boats are pulled), the Metoxit Point and Sage Lot stations were removed on 12/10/2020 and 12/11/2020, respectively. The deployment dates and times for 2021 are indicated below: The staff at the Childs River marina planned a large construction project for October 2021. All docks and piers were removed while new bulkheads and other structures were built. We removed the Childs River sonde on October 4, 2021, the portion of the dock connecting it to the main walkway had already been removed. We surveyed the cross bar that holds the sonde at the bottom of the pipe and some construction marks on the remaining section of the dock. We are attempting to find out the elevations of the construction marks so that we can calculate the sonde's elevation in its original configuration.

Menauhant

Deploy Date	Deploy Time	Retrieve Date	Retrieve Time
1/17/2023	13:00	2/21/2023	13:15
2/21/2023	13:30	2/22/2023	08:15
2/22/2023	08:30	3/21/2023	10:15
3/21/2023	09:30	4/26/2023	15:45
4/26/2023	15:45	5/31/2023	14:00
5/31/2023	14:15	7/7/2023	12:15
7/7/2023	12:30	8/2/2023	15:15
8/2/2023	15:30	9/5/2023	10:00
9/5/2023	10:00	10/5/2023	10:00
10/5/2023	09:30	11/1/2023	09:15
11/1/2023	09:15	11/29/2023	10:45
11/29/2023	11:00	12/19/2023	08:15
12/19/2023	08:30	1/9/2024	10:30

Metoxit Point

Deploy Date	Deploy Time	Retrieve Date	Retrieve Time
3/29/2023	14:30	5/9/2023	11:00
5/8/2023	09:30	6/26/2023	10:45
6/26/2023	11:45	7/28/2023	14:00
7/28/2023	13:00	8/28/2023	15:00
8/28/2023	15:15	9/28/2023	12:45
9/28/2023	13:00	10/26/2023	10:15
10/26/2023	10:30	11/21/2023	09:45
11/21/2023	10:00	12/4/2023	12:00

Child's River

Deploy Date	Deploy Time	Retrieve Date	Retrieve Time
1/30/2023	14:00	3/6/2023	13:45
3/6/2023	14:00	4/10/2023	12:30
4/10/2023	13:45	5/11/2023	11:00
5/11/2023	11:15	6/20/2023	15:45
6/20/2023	15:45	7/20/2023	10:00
7/20/2023	10:15	8/17/2023	14:45
8/17/2023	15:00	9/14/2023	11:15
9/14/2023	11:30	10/16/2023	10:45
10/16/2023	10:45	11/8/2023	15:15
11/8/2023	15:30	12/6/2023	09:30

Sage Lot

Deploy Date	Deploy Time	Retrieve Date	Retrieve Time
3/27/2023	15:15	5/8/2023	15:00
5/8/2023	15:30	6/12/2023	15:00
6/12/2023	15:15	7/13/2023	12:00
7/13/2023	12:15	8/14/2023	14:30
8/14/2023	14:45	9/11/2023	11:30
9/11/2023	11:45	10/10/2023	11:45
10/10/2023	12:00	11/7/2023	09:30
11/7/2023	09:45	12/4/2023	10:30

7) Distribution -

NOAA retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The NERRS retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the NERR site where the data were collected should be contacted and fully acknowledged in any subsequent publications in which any part of the data are used. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or

comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

Requested citation format:

NOAA National Estuarine Research Reserve System (NERRS). System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: http://www.nerrsdata.org/; accessed 12 October 2023.

Also <u>include the following excerpt</u> in the metadata which will address how and where the data can be obtained.

NERR water quality data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Principal Investigators and Contact Persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page www.nerrsdata.org. Data are available in comma delimited format.

8) Associated researchers and projects -

As part of the SWMP long-term monitoring program, WQB NERR also collects 15-minute meteorological data and monthly grab and diel samples for nutrient/pigment data which may be correlated with this water quality dataset. These data are available at www.nerrsdata.org.

Waquoit BayWatchers:

The Reserve has carried out a volunteer-based water quality monitoring program since 1993 called *BayWatchers*. Water quality measurements are carried out at 9 sites within Waquoit Bay estuary for the purposes of 1) constructing a long time series of water quality information to determine trends, as well as 2) providing a sentinel role to detect unusual changes and events. Monthly (October-May) and Bi-weekly (June-September) measurements are made year-round on a set schedule. Chl-*a* samples are processed and analyzed using Turner 10AU fluorometer at WBNERR. Dissolved inorganic nutrient samples are currently analyzed by the Provincetown Center for Coastal Studies (pre-2015 data was analyzed at the Woods Hole Oceanographic Institute). All data is processed and archived at WBNERR and is publicly available upon request.

A new field procedure was initiated in July 2007 and a ninth site was added at the south basin of Waquoit Bay at the first inlet buoy in the main channel. A change at this time was made from previous wet chemical measurements to utilizing hand-held YSI 85 meters to measure water temperature, salinity, and dissolved oxygen (% and mg/L). Each meter is calibrated each sampling period for dissolved oxygen. Measurements are taken at the surface (0.25m) and the bottom at each site. The bottom depth is recorded. Additionally, due to shallow depths at most sites, water clarity measurements with Secchi discs have been discarded for turbidity measurements.

Two bottles of water are now collected at each site for nutrients analysis, at approximately 0.25m below the surface, by locking the bottles into a hand-held apparatus. This new sampling procedure has helped in standardizing the depth sampled for all sites in our chemical analysis. The bottles are mounted to a pole and capped with rubber stoppers attached to a rope. When the bottles are lowered to a marked level (0.25m) on the apparatus, the rope is pulled and water enters the bottle. The cap is placed on the bottles and returned back to the lab for turbidity, chlorophyll, and nutrient analysis. Physical characterization of the site and sampling period are recorded each sampling date (time of sampling, weather conditions-sun/clouds/rain/fog, name of team members, etc) and any other observations are recorded.

II. Physical Structure Descriptors

9) Sensor specifications -

YSI EXO Sonde:

Parameter: Temperature

Units: Celsius (C)

Sensor Type: CT2 Probe, Thermistor

Model#: 599870 Range: -5 to 50 C

Accuracy: -5 to 35: +/-0.01, 35 to 50: +/-0.05

Resolution: 0.001 C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: CT2 Probe, 4-electrode cell with autoranging

Model#: 599870 Range: 0 to 200 mS/cm

Accuracy: 0 to 100: +/- 0.5% of reading or 0.001 mS/cm; 100 to 200: +/- 1% of reading

Resolution: 0.001 mS/cm to 0.1 mS/cm (range dependant)

Parameter: Salinity

Units: practical salinity units (psu)/parts per thousand (ppt)

Sensor Type: CT2 probe, Calculated from conductivity and temperature

Range: 0 to 70 psu

Accuracy: +/- 1.0% of reading pr 0.1 ppt, whichever is greater

Resolution: 0.01 psu

OR

Parameter: Temperature

Units: Celsius (C)

Sensor Type: Wiped probe; Thermistor

Model#: 599827 Range: -5 to 50 C Accuracy: ±0.2 C Resolution: 0.001 C

Parameter: Conductivity

Units: milli-Siemens per cm (mS/cm)

Sensor Type: Wiped probe; 4-electrode cell with autoranging

Model#: 599827 Range: 0 to 100 mS/cm

Accuracy: ±1% of the reading or 0.002 mS/cm, whichever is greater

Resolution: 0.0001 to 0.01 mS/cm (range dependent)

Parameter: Salinity

Units: practical salinity units (psu)/parts per thousand (ppt)

Model#: 599827

Sensor Type: Wiped probe; Calculated from conductivity and temperature

Range: 0 to 70 ppt

Accuracy: ±2% of the reading or 0.2 ppt, whichever is greater

Resolution: 0.01 psu

Parameter: Dissolved Oxygen % saturation

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 599100-01

Range: 0 to 500% air saturation

Accuracy: 0-200% air saturation: +/- 1% of the reading or 1% air saturation, whichever is greater 200-500% air

saturation: +/- 5% or reading Resolution: 0.1% air saturation

Parameter: Dissolved Oxygen mg/L (Calculated from % air saturation, temperature, and salinity)

Units: milligrams/Liter (mg/L)

Sensor Type: Optical probe w/ mechanical cleaning

Model#: 599100-01 Range: 0 to 50 mg/L

Accuracy: 0-20 mg/L: +/-0.1 mg/l or 1% of the reading, whichever is greater

20 to 50 mg/L: \pm /- 5% of the reading

Resolution: 0.01 mg/L

Parameter: Non-vented Level - Shallow (Depth)

Units: feet or meters (ft or m)

Sensor Type: Stainless steel strain gauge

Range: 0 to 33 ft (10 m)

Accuracy: +/- 0.013 ft (0.004 m) Resolution: 0.001 ft (0.001 m)

Parameter: pH Units: pH units

Sensor Type: Glass combination electrode Model#: 599701(guarded) or 599702(wiped)

Range: 0 to 14 units

Accuracy: +/- 0.1 units within +/- 10° of calibration temperature, +/- 0.2 units for entire temperature range

Resolution: 0.01 units

Parameter: Turbidity

Units: formazin nephelometric units (FNU) Sensor Type: Optical, 90 degree scatter

Model#: 599101-01 Range: 0 to 4000 FNU

Accuracy: 0 to 999 FNU: 0.3 FNU or +/-2% of reading (whichever is greater); 1000 to 4000 FNU +/-5% of

reading

Resolution: 0 to 999 FNU: 0.01 FNU, 1000 to 4000 FNU: 0.1 FNU

Parameter: Chlorophyll Units: micrograms/Liter Sensor Type: Optical probe

Model#: 599102-01 Range: 0 to 400 ug/Liter

Accuracy: Dependent on methodology Resolution: 0.01 ug/L chl a, 0.1% FS

Depth, Salinity and Turbidity data disclaimers:

Depth qualifier:

The NERR System-Wide Monitoring Program utilizes YSI data sondes that can be equipped with either vented or non-vented depth/level sensors. Readings for both vented and non-vented sensors are automatically compensated for water density change due to variations in temperature and salinity; but for all non-vented depth measurements, changes in atmospheric pressure between calibrations appear as changes in water depth. The error is equal to approximately 1.02 cm for every 1 millibar change in atmospheric pressure, and is eliminated for vented sensors because they are vented to the atmosphere throughout the deployment time interval.

Beginning in 2006, NERR SWMP standard calibration protocol calls for all non-vented depth sensors to read 0 meters at a (local) barometric pressure of 1013.25 mb (760 mm/hg). To achieve this, each site calibrates their depth sensor with a depth offset number, which is calculated using the actual atmospheric pressure at the time of calibration and the equation provided in the SWMP calibration sheet or digital calibration log. This offset procedure standardizes each depth calibration for the entire NERR System. If accurate atmospheric pressure data are available, non-vented sensor depth measurements at any NERR can be corrected.

In 2010, the CDMO began automatically correcting Depth/Level data for changes in barometric pressure as measured by the reserve's associated meteorological station during data ingestion. These corrected Depth/Level data are reported as cDepth and cLevel, and are assigned QAQC flags and codes based on QAQC protocols. Please see sections 11 and 12 for QAQC flag and code definitions.

NOTE: older Depth data cannot be corrected without verifying that the depth offset was in place and whether a vented or non-vented depth sensor was in use. No SWMP data prior to 2006 can be corrected using this method. The following equation is used for corrected Depth/Level data provided by the CDMO beginning in 2010:

((1013-BP)*0.0102)+Depth/Level = cDepth/cLevel.

Salinity units qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by reserves. While the 6600 series sondes report salinity in parts per thousand (ppt) units, the EXO sondes report practical salinity units (psu). These units are essentially the same and for SWMP purposes are understood to be equivalent, however psu is considered the more appropriate designation. Moving forward the NERR System will assign psu salinity units for all data regardless of sonde type.

Turbidity qualifier:

In 2013, EXO sondes were approved for SWMP use and began to be utilized by reserves. While the 6600 series sondes report turbidity in nephelometric turbidity units (NTU), the EXO sondes use formazin nephelometric units (FNU). These units are essentially the same but indicate a difference in sensor methodology, for SWMP purposes they will be considered equivalent. Moving forward, the NERR System will use FNU/NTU as the designated units for all turbidity data regardless of sonde type. If turbidity units and sensor methodology are of concern, please see the Sensor Specifications portion of the metadata.

Chlorophyll fluorescence disclaimer:

YSI chlorophyll sensors (6025 or 599102-01) are designed to serve as a proxy for chlorophyll concentrations in the field for monitoring applications and complement traditional lab extraction methods; therefore, there are accuracy limitations associated with the data that are detailed in the YSI manual including interference from other fluorescent species, differences in calibration method, and effects of cell structure, particle size, organism type, temperature, and light on sensor measurements.

10) Coded variable definitions -

Sampling station:	Sampling site code:	Station code:
Motovit Doint	MP	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Metoxit Point	1,11	wqbmpwq
Menauhant	MH	wqbmhwq
Child's River	CR	wqbcrwq
Sage Lot Pond	SL	wqbslwq

11) QAQC flag definitions -

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). During primary automated QAQC (performed by the CDMO), -5, -4, and -2 flags are applied automatically to indicate data that is missing and above or below sensor range. All remaining data are then flagged 0, passing initial QAQC checks. During secondary and tertiary QAQC 1, -3, and 5 flags may be used to note data as suspect, rejected due to QAQC, or corrected.

- -5 Outside High Sensor Range
- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 2 Open reserved for later flag
- 3 Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

12) QAQC code definitions -

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the deployment or YSI datasonde, sensor errors are sensor specific, and comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point, but some comment codes (marked with an * below) can be applied to the entire record in the F_Record column.

General Errors

ocherar Enro.	13
GIC	No instrument deployed due to ice
GIM	Instrument malfunction
GIT	Instrument recording error; recovered telemetry data
GMC	No instrument deployed due to maintenance/calibration
GNF	Deployment tube clogged / no flow
GOW	Out of water event
GPF	Power failure / low battery
GQR	Data rejected due to QA/QC checks
GSM	See metadata
Corrected I	Depth/Level Data Codes
GCC	Calculated with data that were corrected during QA/QC
GCM	Calculated value could not be determined due to missing data
GCR	Calculated value could not be determined due to rejected data
GCS	Calculated value suspect due to questionable data

Sensor Errors	S
SBO	Blocked optic
SCF	Conductivity sensor failure
SCS	Chlorophyll spike
SDF	Depth port frozen
SDG	Suspect due to sensor diagnostics
SDO	DO suspect
SDP	DO membrane puncture
SIC	Incorrect calibration / contaminated standard
SNV	Negative value
SOW	Sensor out of water
SPC	Post calibration out of range
SQR	Data rejected due to QAQC checks
SSD	Sensor drift
SSM	Sensor malfunction
SSR	Sensor removed / not deployed
STF	Catastrophic temperature sensor failure
STS	Turbidity spike
SWM	Wiper malfunction / loss
Comments	
CAB*	Algal bloom
CAF	Acceptable calibration/accuracy error of sensor
CAP	Depth sensor in water, affected by atmospheric pressure
CBF	Biofouling
CCU	Cause unknown
CDA*	DO hypoxia (<3 mg/L)
CDB*	Disturbed bottom
CDF	Data appear to fit conditions
CFK*	Fish kill
CIP*	Surface ice present at sample station
CLT*	Low tide
CMC*	In field maintenance/cleaning
CMD*	Mud in probe guard
CND	New deployment begins
CRE*	Significant rain event
CSM*	See metadata
CTS	Turbidity spike
CVT*	Possible vandalism/tampering
CWD*	Data collected at wrong depth

13) Post deployment information –

CWE*

Significant weather event

Red text in the tables below indicates a post-calibration that is outside of normal range. The drift could be caused by biofouling or diluted/contaminated standard. The red highlights are merely to acknowledge that the numbers were cause for further investigation or something was notable about the deployment and does not necessarily mean the entire deployment was of poor quality. Check the field notes in the next section for any specific information about that deployment.

^{*}Note: pH post-deployment readings are temperature dependent and minor variations are expected as a result.

Childs River (EXO2 deployed at this site)

Date Checked	DO	Baro.	Depth	Depth	SpCond	pH 7	pH 10	Turbidity	Turbidity	Chl 0	Chl	Rhodamine
	100%	Pres.		Offset	50.00	7.00	10.00	DI	124.0	DI	Rhodamine	Std value
dd/mm/yyyy	%	mmHg	m	m	mS/cm			FNU	FNU	μg/L	μg/L	μg/L
03/06/2023	98.5	757.59	-0.052	-0.032	49.95	7.03	10.17	-0.05	123.9	0.11	16.6	68.6
04/10/2023	103.4	765.81	0.103	0.079	49.49	6.97	10.01	0.98	119.82	0.92	98.3	80.7
05/11/2023	99.0	762.76	0.043	0.038	50.399	7.07	10.08	0.32	123.73	0.04	56.8	70.7
06/21/2023	100.9	770.38	0.147	0.141	49.98	7.11	10.24	-0.2	123.97	0.43	82.55	94.8
07/20/2023	97.8	761.24	0.029	0.017	52.19	7.07	10.01	1.0	117.59	-0.05	48.55	64.2
08/17/2023	96.9	761.24	0.004	0.017	49.84	6.98	10.11	0.18	-	0.15	57.6	63.7
09/14/2023	102.2	762.0	0.028	0.027	50.51	6.92	10.17	0.99	125.86	0.29	77.5	64.8
10/16/2023	97.9	750.06	-0.128	-0.135	50.26	7.04	9.85	0.12	123.80	0.92	74.2	71.1
11/08/2023	98.7	762.24	0.018	0.017	49.44	7.02	10.03	1.25	124.09	0.37	75.7	68.8
12/06/2023	98.2	760.48	0.0	0.007	49.87	6.96	10.11	-0.47	123.65	0.58	73.4	69.4

Menauhant (EXO2 deployed at this site)

Date Checked	DO	Baro.	Depth	Depth	SpCond	pH 7	pH 10	Turb	Turb	Chl 0	Chl	Rhodamine
dd/mm/yyyy	100%	Pres.	m	Offset	50.00 mS/cm	7.00	10.00	DI FNU	124.0 FNU	DI μg/L	Rhodamine µg/L	Std value µg/L
02/21/2023	99.3	760.0	-0.039	0	50.017	7.08	10.02	-0.09	125.2	-0.03	72.3	69.2
02/22/2023	101.6	764.29	0.218	0.058	50.21	7.03	10.13	-0.02	124.11	0.0	72.66	73.3
03/21/2023	102.0	769.62	0.333	0.131	77.05	6.79	9.74	0.02	123.74	0.0	82.6	84.8
04/27/2023	102.3	768.86	0.006	0.12	50.33	7.09	10.03	-0.26	124.38	0.04	78.3	73
05/31/2023	105.3	766.57	0.093	0.089	50.395	7.08	10.07	0.14	124.76	0.0	70.04	69.8
07/07/2023	99.4	758.95	-0.002	-0.014	51.20	6.93	10.04	0.42	123.65	0.04	59.3	67.7
08/02/2023	102.8	765.81	0.093	0.079	49.75	6.94	9.98	0.48	123.6	0.35	78.5	65.5
09/05/2023	95.1	758.95	-0.015	-0.014	49.85	6.96	10.02	-	-	0.12	53.59	63.5
10/05/2022	101.1	762.76	0.104	0.038	49.94	7.03	9.99	0.07	124.54	-0.12	62.0	67.5
11/01/2023	99.3	758.96	-0.106	-0.014	49.843	7.01	9.90	0.97	124.19	0.23	87.7	71.1
11/29/2023	100.4	763.52	0.042	0.048	50.04	6.99	10.00	0.4	122.6	0.56	71.6	72.6
12/19/2023	100.2	759.71	0.013	-0.004	49.736	6.99	9.94	-0.25	123.84	-0.03	76.35	69.2
01/09/2024	101.6	769.62	0.148	0.131	50.165	6.98	9.95	0.33	124.81	0.55	72.84	69.4

Metoxit Point (EXO2 deployed at this site)

Date Checked	DO	Baro.	Depth	Depth	SpCond	pH 7	pH 10	Turbidity	Turbidity	Chl 0	Chl	Rhodamine
	100%	Pres.		Offset	50.00	7.00	10.00	DI	124.0	DI	Rhodamine	Std value
dd/mm/yyyy	%	mmHg	m	m	mS/cm			FNU	FNU	μg/L	μg/L	μg/L
*05/09/2023	97.8	762.0	0.022	0.027	49.84	7.11	10.10	0.22	124.35	-0.02	79.25	72.1
06/26/2023	99.2	757.68	-0.023	-0.032	50.12	6.80	9.85	0.67	125.2	0.23	64.13	64.5
07/28/2023	99.9	760.48	0.006	0.006	51.03	6.92	9.91	0.45	124.3	0.22	62.0	62.3
08/29/2023	99.9	762.0	0.03	0.027	49.79	6.92	9.93	0.36	124.29	-0.07	59.6	65
09/28/2023	100.5	769.62	0.128	0.131	50.09	7.06	10.04	0.6	123.90	0.09	75.1	69.7
10/26/2023	100.5	765.81	0.076	0.079	50.00	6.98	9.48	0.13	100.2	0.3	67.27	69.7
11/21/2023	102.3	774.70	0.201	0.20	50.105	6.97	10.32	0.22	121.01	-0.05	79.75	69.2
12/04/2023	99.3	754.63	-0.087	-0.073	49.777	6.91	9.89	-0.06	122.68	0.0	65.47	70.8

Sage Lot (EXO2 deployed at this site)

Date Checked	DO	Baro.	Depth	Depth	SpCond	pH 7	pH 10	Turbidity	Turbidity	Chl 0	Chl	Rhodamine
	100%	Pres.		Offset	50.00	7.00	10.00	DI	124.0	DI	Rhodamine	Std value
dd/mm/yyyy	%	mmHg	m	m	mS/cm			FNU	FNU	μg/L	μg/L	$\mu g/L$
05/05/2023	101.8	753.87	-0.073	-0.083	49.93	7.00	10.08	0.15	126.4	0.25	86.75	80.7
06/13/2023	98.9	753.87	-0.083	-0.083	33.9	7.09	10.01	-0.08	124.1	-0.09	67.59	68.8
07/13/2023	98.9	759.71	0.008	-0.004	45.90	6.98	9.94	0.85	118.4	0.47	56.75	62.9
08/15/2023	101.7	756.92	-0.053	-0.042	50.09	7.03	10.02	0.44	124.08	0.49	69.8	62.7
09/11/2023	98.6	762.00	0.026	0.027	50.57	7.11	10.15	0.40	124.63	0.07	57.4	66.2
10/10/2023	99.8	756.92	-0.043	-0.042	50.26	6.95	10.00	1.52	123.77	0.44	64.3	70.4
11/07/2023	99.5	753.11	-0.1	-0.094	49.66	6.98	9.95	-0.45	123.45	0.09	69.65	68.4
12/04/2023	99.4	754.63	-0.66	-0.073	52.99	7.05	10.32	-0.11	123.45	-0.03	67.3	71.2

14) Other remarks/notes –

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

NOTE 1: SMALL NEGATIVE TURBIDITY ANOMALIES:

Slight negative turbidity values sometimes occur because of small calibration offsets. Often these turbidity minimum values are between 0 and -2 NTU. All these small negative turbidity values (the minimum for a given deployment) should be considered to be within 2 NTU of the true datum for correction purposes. This data has been given a Flag Code of <1> and retained.

NOTE 2: BIOLOGICAL-RELATED TURBIDITY ANOMALIES:

This type of anomaly includes turbidity readings that are either outside of the normal range or spikes way above background and unrelated to increased sediment suspension or decreased water column clarity. We believe these records are real (and not sensor malfunction), although not reflective of actual water column turbidity. These extreme values are likely due to biological factors (such as small fish, crabs, or other marine organisms). Our criteria for flagging these data are single spikes (above rather constant background) over 50 NTU that are more than 10 times surrounding values. These readings were rejected <-3>[SQR].

NOTE 3: SUSPENSION EVENT RELATED TURBIDITY ANOMALIES:

This type of anomaly includes turbidity readings that were either outside the normal range, or spikes way above background that are related to elevated turbidity levels indicative of wind wave-induced suspension (at the Menauhant site typically where vegetation often re-circulates due to wind and tidal currents or gets caught on the sonde guard) or prop wash-related suspension events (at the Childs River site typically). We believe these are real (and not sensor malfunction), though not reflective of actual water column turbidity. These extreme values are likely due to large floating particles (i.e., seaweeds, detritus, etc.) suspended in the water column during storm events usually from strong southerly winds in the Waquoit Bay area (see end of section 5 for more detail on these events at this site). Our criteria for flagging these data are values over 100 NTU that are more than 5 times the magnitude of surrounding values and linked to high winds. These readings were rejected <-3> (CDB).

NOTE 4: SMALL NEGATIVE DEPTH ANOMALIES:

This type of anomaly occurs due to barometric pressure differences between time of calibration and the reading and ice conditions. In all such cases, barometric pressure differences are checked as well as comparison with other parameters for indications of aerial exposure to verify that all data are valid submerged readings.

NOTE 5: MISSING DATA

Data are missing due to equipment or associated specific probes not being deployed, equipment failure, time of maintenance or calibration of equipment, or repair/replacement of a sampling station platform. Any NANs in the dataset stand for "not a number" and are the result of low power, disconnected wires, or out of range readings. If additional information on missing data is needed, contact the Research Coordinator at the reserve submitting the data.

NOTE 6: ELEVATED CHLOROPHYLL FLUORESCENCE ANOMALIES

Due to interference from biofouling or floating detritus, the chlorophyll fluorescence optic sensors will record values which are above the normal environmental range. Sporadic values which only occur for one or two 15-minute readings, exceed 25 ug/L, and/or go over five times the magnitude of surrounding values are flagged as suspect <1> and given the code [SCS] indicating a chlorophyll spike. Sporadic values which only occur for one or two 15-minute readings, exceed 40 ug/L, and/or go over ten times the magnitude of surrounding values are flagged as rejected <-3> and given the code [SCS] indicating a chlorophyll spike.

Additionally, values > 100µg/L should be given special consideration when analyzing chlorophyll fluorescence data. Extremely high and sustained chlorophyll fluorescence data impacted by detritus, biofouling, and/or dissolved forms of fluorescent interference (e.g., colored dissolved organic matter) are rejected and flagged as <-3>[SQR].

NOTE 7: HYPOXIC EVENTS AND SMALL NEGATIVE D.O VALUES

Many prolonged periods of hypoxia and even anoxia occurred at the Sage Lot and Metoxit Point stations during the summer months (particularly July and August, but also into September). These hypoxic events often began in the evening (usually around or after 1800, but occasionally earlier), and would last into the morning (as late as 1000), sometimes with a prolonged period of small negative D.O values sandwiched in between during the night hours. This pattern occurred most notably at Metoxit Point, with similar events at Sage Lot not lasting quite as long, not occurring quite as often, and mostly missing the small negative values. Since these events formed a consistent pattern and schedule throughout the summer, the data was flagged as <0> (CDA). Small negative D.O values are automatically flagged as suspect, but since they are thought to represent valid anoxic events and not an issue with the sensor, they are coded with comments as <1> [SNV] (CDA).

FIELD and "CSM" NOTES:

All times reported in Eastern Standard Time (EST).

Childs River (CR)

General (CR)

- This station was removed from water on 10/04/2021 due to construction at Child's River site. Pilings and dock where sonde stationed were removed entirely. The station was re-established on 01/30/2023 as close as possible to the previous location.
- > 03/30/2023 10:15 04/10/2023 12:30 <-3>[SWM] The wiper was found in bottom of sonde guard at the end of the deployment. It most clearly affected the turbidity data which kept steadily rising, but also seemed to affect other optical sensors (Chl-a, pH, DO).
- ➤ 01/30/2023 14:00 03/30/2023 10:15, <1>[SDO](CSM) The marina where this sonde station is located maintains a de-icing bubbler in the water over the winter until March 31. This could affect both D.O. mg/L and %Sat readings.
- ➤ 04/10/2023 12:45 13:30 <-2>[GMC] We suspect that one of the internal sonde clocks (Nobska or Tarpaulin) was set to Local Time while the other was set to Daylight Savings Time. The sonde swap happened smoothly with no time lost, and yet Nobska's clock read 12:37 and Sankaty's read 13:37. Nobska was deployed when Daylight Savings Time occurred.

➤ On 06/30/2023, the sonde case (with the sonde inside it) was detached from the dock piling where it was lashed so that a piece of equipment belonging to the marina could be removed from the water. After that, the sonde case was re-lashed into place in two places (top and bottom of the case). The whole operation lasted between 1100 – 1300, local time (1000 – 1200 EST).

Chlorophyll (CR)

- ➤ 01/30/2023 03/06/2023 13:45, <1>[SPC] Post calibration values were significantly low. No real evidence seen of bad data on initial checks. Labeled only as suspect.
- 02/26/2023 10:45 12:15, <-3>[SQR] Any prolonged (longer than 30 minutes) period of chlorophyll levels > 100μg/L are flagged and rejected in this manner as per Note 6 above. A few examples of this exist in February and early March.
- ➤ 03/02/2023 20:30, <-3>[SQR] This value is considered connected to the surrounding high values and part of the prolonged period which would require this flag per Note 6.
- > 04/14/2023 18:45, <1>[SCS] Any sporadic readings exceeding 25 μg/L or five times the surrounding values are given this code as per Note 6. Several of these examples occur in this deployment.
- 02/26/2023 10:45 12:15, <-3>[SCS] Any sporadic or short period of chlorophyll levels > 40μg/L are flagged and rejected in this manner as per Note 6 above. A few examples of this exist in mid-April and early May.
- ➤ 06/14/2023 21:15 06/15/2023 00:45, <-3>[SQR] This data meets the criteria for Note 6, with readings higher than 100 mg/L for a sustained period of time.
- ➤ 08/17/2023 00:45 03:45, <-3>[SQR] This data meets the criteria for Note 6, with readings higher than 100 mg/L for a sustained period of time.
- ➤ 09/27/2023 22:45 09/28/2023 01:00, <-3>[SQR] This data meets the criteria for Note 6, with readings higher than 100 mg/L for a sustained period of time (2.5 hours), and during the night. Similar occurrences happen during the night for many other nights during this deployment.
- ➤ 10/16/2023 20:00 10/17/2023 07:15 <-3>[SQR](CCU) This data meets the criteria for Note 6, with readings higher than 100 mg/L for a sustained period of time (2.5 hours), and during the night. Similar occurrences happen during the night for many other nights during this deployment and the following ones until the final days before 2023 data ends (consistently from 10/16 until 12/06).
- ➤ 11/13/2023 15:00 <1>(CCU) Som values nearby or occasionally within the long evening hours of rejected data are labeled this way to indicate that the data is suspect because of their high values. The pattern is consistent enough and occurs over multiple deployments, so we took care to not remove the signal entirely, but just to remove the incredibly high peaks and to label enough data as suspect so that users show caution when reporting this data.

Turbidity (CR)

➤ 02/27/2023 03:45-04:15 <-3>[CDB] – Meets criteria for Note 3, a suspension related turbidity anomaly. Other examples of this in this deployment include 03/03/2023 at 08:30.

- ➤ 03/06/2023 12:30 <-3>[SQR] Turbidity spike over 50 NTU and 10x surrounding values, meting Note 2 criteria.
- \triangleright 06/01/2023 16:00, <-3>[SQR] Turbidity spikes over 50 NTU and over 10x the surrounding values are noted in this way as per Note 2. Several of these spikes are seen between 6/01 6/19.
- ➤ 06/03/2023 15:15, <1>[STS] The reading here is just below the threshold of 50 NTU which would require rejection, but is still more than 10x the surrounding values. It functionally meets the criteria for rejection, but technically does not. Thus, labeled with <1>.
- > 07/10/2023 11:30, <-3>[SQR] Meets criteria for Note 2 (higher than 50 NTU, for a brief time period, and 10x higher than surrounding data).
- > 09/10/2023 17:15, <-3>[SQR] Meets criteria for Note 2 (higher than 50 NTU, for a brief time period, and 10x higher than surrounding data).

> 09/14/2023 07:30 – 19:15, <1>(CSM) – Suspect because EXO1 readings at sonde switch and new deployment (12:30) do not match readings from either sonde, and because pH values on either side of new deployment vary.

Depth (CR)

➤ 11/22/2023 12:15 – 12/06/2023 09:30, <1>(CSM) – Suspect because around this time the depth values start cycling as before but around a decidedly shallower depth. Graphs show a shift to a suddenly much shallower depth than previously throughout the quarter.

Specific Conductivity and Salinity (CR)

➤ 02/19/2023 15:45 <1>(CSM) - Isolated low Sal/Sp. Cond. Values. Other parameters don't seem to be affected. Other examples seen at 02/17/2024 15:45 and 03/20/2023 16:00.

Menauhant (MH)

General (MH)

- ➤ 03/21/2023 09:15 10:15 <-2>[GSM] One of the sondes was apparently on Local daylight Savings Time while the other was not.
- ➤ 04/26/2023 16:45 <-2>[GMC](CSM) Sondes were being switched while this record was happening.
- ➤ 06/14/2023 19:30 07/04/2023 16:45, <-2>[GIM](CSM)– At the beginning of this period, a new deployment was automatically initiated for some unknown reason, with no depth parameter being recorded.
- > 07/04/2023 16:45 07/07/2023 13:15, <-2>[GIM](CSM) A full catastrophic failure occurred and the sonde stopped recording entirely possibly the result of some kind of power loss (but unknown). No data from here until the end of the deployment.
- > 07/25/2023 04:45, <1>(SCF) Brief anomalously low reading. A few of these events occur in this deployment. Dependent parameters (D.O., Depth) have been flagged as well.
- ➤ 08/03/2023 01:00 <-3>[SCF] Brief anomalously low readings. A few of these events occur in this deployment. Dependent parameters (D.O., Depth) have been flagged as well. A few similar events occur in this deployment.
- ➤ 08/13/2023 23:45 <-3>[SCF] Brief anomalously low readings. A few of these events occur in this deployment. Dependent parameters (D.O., Depth) have been flagged as well.
- ➤ 09/03/2023 06:15 09/05/2023 12:00 <-2>[GIM] A full catastrophic failure occurred and the sonde stopped recording entirely possibly the result of some kind of power loss (but unknown). No data was collected until the start of the new deployment on 09/05/2023 at 12:00.
- ➤ 09/08/2023 07:00 10/05/2023 11:00 <-2>[GPF]. No data registered because of a suspected power failure, so this deployment only registered about 3 days of data. The problem seemed to stem from dirty connections in the data cable to the telemetry station, which caused a power leakage particularly during transmission and consequently drew down power at an accelerated rate. The problem was fixed at the beginning of the next deployment starting on 10/05/2023.
- ➤ 11/28/2023 23:45 11/29/2023 11:00, <-2>[GIM](CSM) Another catastrophic failure in the last days of deployment, potentially due to loss of power but unknown for sure.

Chlorophyll (MH)

- ➤ 01/01/2023 01/17/2023, <-2>[SSM] For unknown reasons, ug/L readings for Chlorophyll were not logged for this deployment.
- \triangleright 01/20/2023 01/23/2023, <-3> [SCS] and <1> [SCS] Several chlorophyll spikes in this time period.
- ➤ 02/01/2023 04:15 02/02/2023 19:00, <-3> [SQR], <-3> [SCS] and <1> [SCS] Potential environmental issues affecting chlorophyll sensor. See above Note 6 on designation between codes. Several of these events occur throughout the whole deployment.

- $\sim 02/18/2023\ 00:00 02/19/2023\ 21:30, <-3>$ [SQR], <-3> [SCS] and <1> [SCS] More unknown issues affecting chlorophyll sensor.
- ➤ 02/18/2023 00:00 02/19/2023 21:30, <-3> [SQR] (CRE), <-3> [SQR] (CBD), <-3> [SCS] (CCU) and <1> [SCS] Some potential environmental conditions affecting the chlorophyll sensor, such as precipitation events and higher winds disturbing the bottom. In general, chlorophyll values are a bit high for February and early March during this deployment.
- > 03/21/2023 03/25/2023 13:45, <-3> [SCS], <-3> [SQR] and <1> [SCS] Several chlorophyll spikes in this time period. Prolonged periods of time with excessively high chlorophyll readings marked per Note 6 as <-3> [SQR]. Individual spikes noted as <-3> [SCS], and individual values in between spikes labeled with <1> [SCS] code.
- 04/14/2023 02:45 04/18/2023 09:30, <-3>[SQR] Several days when much data was rejected because of sustained chlorophyll values well over 100 μg/L and often between 400-600 μg/L. Thes are likely due to high amounts of detritus and potential colored dissolved organic matter (CDOM).
- ➤ 04/28/2023 17:30, 05/06/2023 05/16/2023, 05/26/2023 02:30 <-3> [SCS] Several chlorophyll spikes flagged as per Note 6.
- \triangleright 07/07/2023 16:45, <1>[SCS] Value is briefly over 25 μ ug/L and more than 5x the next value.
- > 07/07/2023 23:30 07/08/2023 00:00 <1>[SCS] (CSM) Values are over 100 μug/L, but normally wouldn't be flagged since they are a short time period and are not more than 5x the surrounding values. However, the highly elevated values at night time is suspicious.
- > 07/08/2023 16:30, <-3>[SCS] Value is over 10x the surrounding values, and over 40 μug/L, meeting criteria for rejection in Note 6. Several other similar examples of this occur in this deployment.
- \triangleright 07/21/2023 16:15 <1>[SCS] Meets criteria in Note 6, with value 5x that of surrounding values and above 25 µg/L. Other instances similar to this one exist for this deployment.
- > 08/04/2023 20:45, <-3>[SCS] Meets criteria in Note 6 of being over 10x the surrounding values and over 40 μug/L. Several other instances of this occur in this deployment.
- ▶ $08/05/2023\ 02:15 < 1>[SCS]$ Meets criteria in Note 6, with value 5x that of surrounding values and above 25 µg/L. Other instances similar to this one exist for this deployment.
- ▶ 10/29/2023 19:30 <-3>[SCS] Meets criteria in Note 6 of being over 10x the surrounding values and over 40 µug/L. Several other instances of this occur in this deployment.
- ➤ 11/15/2023 16:45 11/28/2023 23:30 <1>[SSD](CBF) Around this time, chlorophyll values start trending steadily (but following daily cycles) upwards. However, there were no issues with post-deployment readings. Suspect that the sensor started to drift as biofouling accumulated, and then biofouling was removed during post-deployment readings.
- ➤ 11/24/2023 21:45 <-3>[SCS] Within the timeframe mentioned above full of suspect data, some data values like this one very obviously met conditions for rejecting based on Note 6.
- ➤ 12/04/2023 12:30 -14:00 <-3>[SQR] Sustained extremely high values meeting criteria in Note 6 to be rejected.
- ightharpoonup 12/05/2023 14:15 <-3>[SCS] Meets criteria in Note 6 of being over 10x the surrounding values and over 40 μ ug/L. Several other instances of this occur in this deployment.
- ► $12/08/2023\ 03:00 < -3>[SCS]$ Meets criteria in Note 6 of being over 10x the surrounding values and over $40 \mu ug/L$. Several other instances of this occur in this deployment.
- > 12/08/2023 15:30 15:45 <-3>[SCS] Meets criteria in Note 6 of being over 10x the surrounding values and over 40 μug/L. Several other instances of this occur in this deployment.
- ➤ 12/09/2023 08:15 09:00 <-3>[SQR] Sustained extremely high values meeting criteria in Note 6 to be rejected.
- ➤ 12/10/2023 17:30 18:15 <-3>[SQR] Sustained extremely high values meeting criteria in Note 6 to be rejected.
- > 12/11/2023 15:30 <1>[SCS] Meets criteria in Note 6, with value 5x that of surrounding values and above 25 μg/L. Other instances similar to this one exist for this deployment.

> 12/12/2023 02:30 – 02:45 <1>[SCS] – Meets criteria in Note 6, with value 5x that of surrounding values and above 25 μg/L. Other instances similar to this one exist for this deployment.

۶

Turbidity (MH)

>

- ➤ 02/27/2023 03:45 04:15, <-3>(CDB) Anomalous turbidity spike associated with higher wind event and elevated chlorophyll values. A few other anomalous spikes occur in this deployment, as well as in January and March. Flagged as per Note 3. Other similar examples are seen in this deployment, like the individual entry below.
- \triangleright 03/04/2023 19:30 <-3>[CBD] Meets criteria for rejection set in Note 3.
- ➤ 03/06/2023 23:30 <-3>[SQR] Meets criteria for rejection set in Note 2. Several other similar examples are seen in this deployment.
- ➤ 03/23/2023 20:15, <-3>[SQR] Meets criteria for rejection set in Note 2. Several other similar examples are seen in this deployment.
- ➤ 03/24/2023 15:30 16:00, <-3>[SQR] and <1>[STS] Values are part of a spike that is significantly higher than the surrounding values. The <1> values not quite as high as the other parts of the spike. Generally the other parts of the spike meet the criteria for <-3> [SQR] laid out in Note 2.
- ➤ 04/08/2023 04:00, <1>[STS] The reading here is just below the threshold of 50 NTU which would require rejection, but is still more than 10x the surrounding values. It functionally meets the criteria for rejection, but technically does not. Thus, labeled with <1>. Similar event also occurs at 04/09/2023 at 06:45.
- ➤ 04/17/2023 17:00, <-3>[SQR] Meets criteria for rejection set in Note 2. Other similar examples occur during this deployment.
- ➤ 04/17/2023 18:15-18:30, <-3>[SQR] and <1>[STS] These two values together mostly meet the criteria for rejection set in Note 2, but really only the 18:15 value does. The 18:30 reading doesn't meet all the Note 2 criteria for rejection, but is high enough to warrant a suspect flagging.
- ➤ 07/19/2023 02:45, <-3>[SQR] Meets criteria for rejection set in Note 2. Other examples of this exist during this deployment.
- ➤ 08/04/2023 20:30 20:45, <-3>[SQR] Meets criteria for rejection set in Note 2. Other examples of this exist during this deployment.
- ➤ 08/13/2023 07:00 09/03/2023 06:00, <-2>[SSM] Turbidity sensor stopped reading, and a new deployment was automatically initiated mid-deployment without Turbidity values. The sensor on this sonde was replaced with a new one after the deployment ended.
- ➤ 10/24/2023 02:15, <-3>[SQR] Meets criteria for rejection set in Note 2. Other similar examples occur in this deployment.
- ➤ 11/01/2023 10:30 11/28/23, 23:30 and 12/19/23 08:30 01/09/23 10:30 <-3>[SSM] Looking back at these readings in contrast with the alternating deployment, we suspect that the sensor (installed and manufactured in 2021) is broken. It was mainly reading single digit values while the other sonde (with a 2023 sensor) showed values which seemed more plausible.

pH (*MH*)

> 02/22/2023 – 03/21/2023, <-3> [SPC] – Post calibration values were a bit low for both 7 and 10 standards. and pH readings at ends of the deployment are disjunct with last values of surrounding deployments. In fact, the readings during this deployment are significantly lower and suppressed than the readings in the surrounding deployments.

Specific Conductivity and Salinity (MH)

- \triangleright 07/25/2023 04:45, <1>(SCF) –Brief anomalously low reading
- ➤ 08/13/2023 23:45 <-3>[SCF] Brief anomalously low readings. A few of these events occur in this deployment. Dependent parameters (D.O., Depth) have been flagged as well.

Dissolved Oxygen (% Sat and mg/L)

 \triangleright 09/05/2023 12:30 – 09/08/2023 07:00, <-3>[SSM] – Unknown sensor malfunction led to no data being collected.

Depth

 \triangleright 02/21/2023 13:30 – 02/22/2023 08:30, <-3>[SPC] - Depth values are far off the next deployment, and the post-deployment readings were far off from the offset.

Metoxit Point (MP)

General (MP)

- This station was put in place for the year on March 29, 2023
- ➤ 14:30 05/01/2023 10:45 05/09/2023 <-3>[GSM] On 05/01/2023, when trying to remove this sonde and replace it, the tagline attached to the sonde parted and it fell to the bottom. Weather prevented a new sonde being deployed until 05/08/2023, and the sonde on the bottom was retrieved by snorkeling on 05/09/2023. Data during this time period is rejected because the sonde was sitting on the bottom. For this reason, the post-deployment readings of the previous section are highlighted red, and the EXO1 In-Situ Comparison Data in the next section are marked with an asterisk.
- ➤ 12:00 6/14/23 until the end of the deployment <-3>[GQR](CVT). We suspect some kind of vandalism which prevented retrieval of sonde in a more timely manner. At some point between June 6 and June 12, 2023 the marker buoy attached to the sonde station and adjacent to multiple other marker buoys had its connection to the station severed. Thus, retrieval on day 40 of the deployment on June 12 could not happen. Despite knowing the station's approximate location and the shallow depth, visibility was so poor that it took several snorkeling excursions between Monday June 12 and Friday June 23 until it was found, serviced and thoroughly re-marked. A new deployment not able to be started until Monday June 26. Data looks mostly fine until around June 14 when depth changes drastically on the 42nd day of deployment.
- ➤ 08/02/2023 23:00 08/28/2023 16:00 <-3>[GQR](CVT). Once again, we suspect an incidence of vandalism. The line connecting the marker buoy to the station was cut and we were unable to find the station for multiple weeks due to poor visibility in the water. Station was found only after several snorkeling attempts, leaning heavily to one side, slightly off of its registered location. Additionally, lots of anoxic mud was found in the sonde probe guard. The station was reestablished and re-anchored from several points to the bottom to avoid much leaning in the future, and more marker buoys were placed in the water. Upon inspection, the data shows a sharp drop in D.O. at 23:00 on 08/02/2023 from which it never recovered. Post deployment readings indicated that the probe was likely working properly but that the whole sonde was likely stuck in the mud upon potentially being dragged and pulled down (maybe by a boat that ran over the marker buoy again). All data from that point on is considered to not reflect the state of the water column but instead the bottom and were rejected.
- ➤ 09/12/2023 08:00 <-3>[SCF] Brief anomalously low readings. A few of these events occur in this deployment. Dependent parameters (D.O., Depth) have been flagged as well.
- ➤ 09/12/2023 11:45 15:30 <-3>[SCF] A several hour period of low readings. A few of these events occur in this deployment. Dependent parameters (D.O., Depth) have been flagged as well.
- ➤ 11/21/2023 13:00 16:15 <-3>[SCF] A several hour period of low readings. Dependent parameters (D.O., Depth) have been flagged as well.
- ➤ 11/21/2023 17:15 17:30 <-3>[SCF] Brief anomalously low readings. A few of these events occur in this deployment. Dependent parameters (D.O., Depth) have been flagged as well.
- ➤ 11/27/2023 13:45 14:30, 15:15 15:30, <1>(CRE) A rain event occurred the previous night. It was not particularly significant, but it might have had an effect, so we decided to flag the data as suspect, but not reject it.

Turbidity (MP)

Š

- ➤ 06/06/2023 09:15 <-3>[SQR]. Turbidity reading well over 500 meets criteria for rejection per Note 2. A few other individual instances meet these criteria as well, on 05/18/2023 at 10:30 and 06/08/2023 at 16:15.
- ➤ 07/02/2023 09:15 <-3>[SQR]. Turbidity reading well over 500 meets criteria for rejection per Note 2. A few other instincades meet these criteria as well in this deployment (07/17/2023 at 06:00 and 10:15).
- > 07/07/2023 23:00 <-3>[SQR] Meets criteria for Note 2.
- ightharpoonup 09/10/2023 12:45 16:15. Several instances of values over 200 μ g/L including a consecutive hour (14:15 15:00) of high values that meet criteria of Note 2. All flagged as <-3>[SQR].
- > 09/19/2023 13:15 09/20/2023 09:15 <-3>[CDB] Values are over 100 μg/L, are >5x the surrounding values, and are linked to higher wind speeds and storm events so they meet the criteria for Note 3. Other examples of this occur during this deployment (ie: 09/27/2023 01:30 08:15). Around these periods we also see values flagged as <1>[STS] or <-3>[SQR].
- ➤ 09/27/2023 19:00 <-3>[SQR] Meets criteria for rejection set in Note 2. There are many similar examples of this throughout this deployment.

Chlorophyll (MP)

- ▶ 05/22/2023 18:30 <-3>[SCS] Value meets criteria for flagging small time periods of large spikes per Note 6.
- > 05/23/2023 04:15 05/24/2023 07:15 <1>[SCS] and <-3>[SCS]. Small time periods with some values over 25 μg/L flagged as suspicious <1>[SCS] while small time periods with values over 40 μg/L flagged as rejected <-3>[SCS]. Per Note 6.
- \triangleright 07/16/2023 13:00, <-3>[SCS] Meets criteria in Note 6 of being over 10x the surrounding values and over 40 μ ug/L. Several other instances of this occur in this deployment.
- ightharpoonup 07/24/2023 14:00 <1>[SCS] Meets criteria in Note 6, with value 5x that of surrounding values and above 25 μ g/L. Other instances similar to this one exist for this deployment.
- > 09/01/2023 03:30, <-3>[SCS] Meets criteria in Note 6 of being over 10x the surrounding values and over 40 μug/L. Several other instances of this occur in this deployment.

Dissolved Oxygen (% Sat and mg/L)

➤ 06/30/2023 03:45 – 05:15 and 06:45 – 08:00, <0>[CDA] – This is an example of a low-oxygen event that we think is recorded accurately. Several examples exist like this between June and October, usually marked by a steady decrease throughout the evening that bottoms out in the early morning hours and lasts until close to 0900. The concentration threshold marking a low-oxygen event is 3 mg/L.

Specific Conductivity/Salinity

> 09/17/2023 07:30 – 09/28/2023 08:30 <0>(CRE) - Several significant rain events occurred over this time period, ranging from 1 – 2 inches of rain per event. Considering how values recovered after the rain events ended, it was decided to not flag the data as suspect or rejected.

þΗ

➤ 11/21/2023 10:00 - <1>[SSD] – pH values during this deployment drift immediately down to a lower level and cycled around that lower level. Suspect that the pH tip needed to be replaced.

Sage Lot (SL)

General (MP)

- This station was put in place for the year on March 27, 2023
- \triangleright 08/14/2023 15:45 09/13/2023 13:00 <-3>[GQR](CSM). When this sonde was switched on 9/11/2023, the sensors showed no evidence of oxidation. The the data showed consistently low

DO values along with strange depth and salinity/specific conductivity values indicating that the sonde was potentially sitting in mud. On 9/13/2023, the station was investigated and found that it had been lifted off its cement anchor. The station was placed on the cement platform again and was reading correctly by 13:00 on 9/13/2023. All data in the meantime is rejected.

- ➤ 10/10/2023 12:45 <-2>[SOW] This reading occurred just as the sondes were being switched, and when for a brief instant both sondes were out of the water.
- ➤ 11/07/2023 09:45 12/04/2023 10:30 <1>[SPC] Specific Conductivity post-deployment reading of the known standard was significantly off. The reason for this is unknown, and we currently do not see anything obviously wrong with the data during the deployment.

Chlorophyll (SL)

- \triangleright 05/08/2023 18:00 <-3>[SNV] Rejected small negative value, unknown cause.
- ightharpoonup 06/12/2023 20:45 <1>[SCS] Value meets criteria in Note 6, approximately 5x surrounding value and >25 µg/L.
- > 07/16/2023 17:15 <-3>[SCS] Value meets criteria in Note 6, more than 10x surrounding values and above 40 μg/L.
- ► 10/19/2023~07:45 <-3>[SCS] Value meets criteria in Note 6, more than 10x surrounding values and above $40 \mu g/L$.
- > 11/27/2023 09:00 <-3>[SCS] Value meets criteria in Note 6, more than 10x surrounding values and above 40 μg/L. Several other instances of this occur between now and December.
- > 11/27/2023 12:15 <1>[SCS] Value meets criteria in Note 6, approximately 5x surrounding value and >25 μg/L. A few other instances of this occur between now and December.

Turbidity (SL)

- ➤ 05/10/2023 14:45 <-3>[SQR] Elevated turbidity value flagged as rejected per Note 2. Several other instances of this occur throughout this deployment.
- ➤ 06/30/2023 18:45 <-3>[SQR] Elevated turbidity value flagged as rejected per Note 2. Several other instances of this occur throughout this deployment.
- ➤ 10/13/2023 20:00 <-3>[SQR] Elevated turbidity value flagged as rejected per Note 2. Several other instances of this occur between now and December.
- ➤ 11/26/2023 10:45 11:15 <-3>[STS] Example of elevated turbidity lasting longer than time period specified in Note 6. Since this is still an example of anomalously elevated turbidity, just over a slightly longer time period, it is rejected.
- ➤ 11/30/2023 09:15 <-3>[SQR] Example of elevated turbidity value flagged as rejected per Note 2. Several other instances of this occur.

Dissolved Oxygen (% sat and mg/L)

- > 07/21/2023 07:00, <0>(CDA) We believe this is an accurately recorded instance of a short low-oxygen event. Several other examples of this occur between June and October, when oxygen levels drop steadily throughout the night and bottom out in the early morning hours, sometimes below the 3mg/L threshold that officially marks a low-oxygen event.
- ➤ 10/07/2023 09:00 09:45, <0>(CDA) We believe this is an accurately recorded instance of a short low-oxygen event. Several other examples of this occur, whenoxygen levels drop steadily throughout the night and bottom out in the early morning hours, sometimes below the 3mg/L threshold that officially marks a low-oxygen event.

ħΗ

➤ 11/07/2023 09:45 – 12/04/2023 10:30 <1>[SPC] – Post deployment Specific Conductivity values were higher than expected. Specific Conductivity data in this deployment also seemed to jump visible and suddenly from the previous deployment. Noted as suspect.

YSI EXO1 In-Situ Comparison Data

A handheld YSI EXO1 was used for field calibration and data were recorded at approximate sonde deployment depths (influenced by tide). The handheld measurements are shown below in Tables 1-4. They represent another form of post-check on retrieved sonde data as it is assumed that the recently calibrated sonde is highly accurate on its initial measurement at deployment. If the assumption holds true, we should expect last / first readings to be quite similar within the usual 15 minute time difference between readings if the retrieved instrument was still reading accurately. Large differences indicate potential problems.

Table 1: Menauhant (MH) Deployment/Retrieval EXO1 Data

	aumani (M11) D	<u></u>			•		DO		
	Date	Time	Temp	SpCond	Salinity	DO %	Conc.	рΗ	Depth
MH	M/D/YY	hh:mm	С	mS/cm	ppt	%	mg/L		m
Deploy	12/15/2022	16:30	5.43	53.97	34.95	99.2	9.93	8.04	0.981
Retrieve	01/17/2023	12:58	4.06	49.67	31.70	102.1	10.79	7.85	0.962
Deploy	01/17/2023	12:58	4.06	49.67	31.70	102.1	10.79	7.85	0.962
Retrieve	02/21/2023	13:29	5.29	38.23	23.88	105.0	11.35	8.03	0.930
Deploy	02/21/2023	13:29	5.29	38.23	23.88	105.0	11.35	8.03	0.930
Retrieve	02/22/2023	08:24	4.79	38.18	23.80	102.0	11.17	8.02	0.948
Deploy	02/22/2023	08:24	4.79	38.18	23.80	102.0	11.17	8.02	0.948
Retrieve	03/21/2023	10:23	5.12	49.51	31.72	104.6	10.79	8.02	0.848
Deploy	03/21/2023	10:23	5.12	49.51	31.72	104.6	10.79	8.02	0.848
Retrieve	04/26/2023	15:45	12.79	43.64	28.1	109.9	9.76	7.94	1.18
Deploy	04/26/2023	15:45	12.79	43.64	28.1	109.9	9.76	7.94	1.18
Retrieve	05/31/2023	14:05	19.91	43.319	27.95	107.3	8.29	7.92	1.035
Deploy	05/31/2023	14:05	19.91	43.319	27.95	107.3	8.29	7.92	1.035
Retrieve	07/07/2023	12:18	25.22	43.210	27.81	115.0	8.09	8.07	1.05
Deploy	07/07/2023	12:18	25.22	43.210	27.81	115.0	8.09	8.07	1.05
Retrieve	08/02/2023	15:28	25.51	43.089	27.71	122.8	8.61	8.27	1.01
Deploy	08/02/2023	15:28	25.51	43.089	27.71	122.8	8.61	8.27	1.01
Retrieve	09/05/2023	10:00	23.38	43.504	28.05	112.0	8.12	8.22	0.914
Deploy	09/05/2023	10:00	23.38	43.504	28.05	112.0	8.12	8.22	0.914
Retrieve	10/05/2023	10:10	19.16	42.500	27.33	113.0	8.88	8.22	1.10
Deploy	10/05/2023	10:10	19.16	42.500	27.33	113.0	8.88	8.22	1.10
Retrieve	11/01/2023	09:24	13.49	43.076	27.73	98.5	8.64	8.10	1.07
Deploy	11/01/2023	09:24	13.49	43.076	27.73	98.5	8.64	8.10	1.07
Retrieve	11/29/2023	10:55	6.55	43.916	27.93	100.6	10.27	8.09	0.947

Deploy	11/29/2023	10:55	6.55	43.916	27.93	100.6	10.27	8.09	0.947
Retrieve	12/19/2023	08:25	7.51	43.06	27.42	97.2	9.74	8.04	1.00
Deploy	12/19/2023	08:25	7.51	43.06	27.42	97.2	9.74	8.04	1.00
Retrieve	01/09/2023	-	i	ı	ı	-	ı	ı	1

Table 2: Child's River (CR) Deployment/Retrieval EXO1 Data

							DO		
	Date	Time	Temp	SpCond	Salinity	DO %	Conc.	рН	Depth
CR	M/D/Y	hh:mm	С	mS/cm	ppt	%	mg/L		m
			_	_			_		
Deploy	01/30/2023	13:59	7.40	42.24	26.83	111.0	11.21	7.81	0.575
Retrieve	03/06/2023	13:58	5.89	36.03	22.41	138.9	14.95	8.26	0.838
Deploy	03/06/2023	13:58	5.89	36.03	22.41	138.9	14.95	8.26	0.838
Retrieve	04/10/2023	12:37	13:55	44.16	28.50	149.9	13.09	8.17	0.913
	., ., .,								017 00
Deploy	04/10/2023	12:37	13:55	44.16	28.50	149.9	13.09	8.17	0.913
Retrieve	05/11/2023	11:04	18.27	40.15	25.70	115.0	8.29	7.95	0.929
Deploy	05/11/2023	11:04	18.27	40.15	25.70	115.0	8.29	7.95	0.929
Retrieve	06/20/2023	15:49	22.72	40.19	25.70	151.4	11.25	8.12	0.864
D 1	06/00/0000	45.40	22.72	10.10	25.50	454.4	11.05	0.42	0.044
Deploy	06/20/2023	15:49	22.72	40.19	25.70	151.4	11.25	8.12	0.864
Retrieve	07/20/2023	10:05	27.27	39.93	25.43	12.5	0.87	7.49	1.06
Deploy	07/20/2023	10:05	27.27	39.93	25.43	12.5	0.87	7.49	1.06
Retrieve	08/17/2023	14:46	24.44	40.04	25.56	38.3	2.77	7.64	0.94
D 1	00 /17 /2022	1.4.46	24.44	40.04	25.57	20.2	0.77	7.4	0.04
Deploy Retrieve	08/17/2023	14:46 11:16	24.44	40.04	25.56	38.3	2.77	7.64	0.94
Ketrieve	09/14/2023	11:10	26.61	39.97	25.46	35.1	2.47	7.69	1.06
Deploy	09/14/2023	11:16	26.61	39.97	25.46	35.1	2.47	7.69	1.06
Retrieve	10/16/2023	10:45	16.59	41.67	26.77	81.1	6.71	7.93	1.02
Deploy	10/16/2023	10:45	16.59	41.67	26.77	81.1	6.71	7.93	1.02
Retrieve	11/08/2023	15:19	12.89	41.005	26.24	128.1	11.49	8.19	0.967
- ·	11/00/200	15.10	14.00		2651	100	14	0.10	0.01=
Deploy	11/08/2023	15:19	12.89	41.005	26.24	128.1	11.49	8.19	0.967
Retrieve	12/06/2023	09:31	8.56	42.025	26.76	100.7	9.90	7.84	0.926
					1	1		1	

Table 3: Metoxit Point (MP) Deployment/Retrieval EXO1 Data

							DO		
	Date	Time	Temp	SpCond	Salinity	DO %	Conc.	рН	Depth
CR	M/D/Y	hh:mm	С	mS/cm	ppt	%	mg/L		m

Deploy	03/29/2023	14:18	9.22	48.723	31.57	115.3	10.82	7.77	
Retrieve	05/09/2023	11:00	15.77	43.226	27.88	139.6	11.68	8.16	0.838
Deploy	05/09/2023	11:00	15.77	43.226	27.88	139.6	11.68	8.16	0.838
Retrieve	06/26/2023	10:46	24.58	41.421	26.55	78.4	5.6	7.92	1.087
Deploy	06/26/2023	10:46	24.58	41.421	26.55	78.4	5.6	7.92	1.087
Retrieve	07/28/2023	14:00	28.59	40.66	25.90	139.7	9.33	8.52	
Deploy	07/28/2023	14:00	28.59	40.66	25.90	139.7	9.33	8.52	
Retrieve	08/28/2023	15:10	23.88	43.38	27.24	151.3	10.93	8.32	1.33
Deploy	08/28/2023	15:10	23.88	43.38	27.24	151.3	10.93	8.32	1.33
Retrieve	09/28/2023	12:48	17.87	40.92	26.25	111.8	9.07	8.12	1.16
Deploy	09/28/2023	12:48	17.87	40.92	26.25	111.8	9.07	8.12	1.16
Retrieve	10/26/2023	10:19	15.72	42.332	27.24	103.7	-	8.23	1.20
Deploy	10/26/2023	10:19	15.72	42.332	27.24	103.7	-	8.23	1.20
Retrieve	11/21/2023	09:58	7.48	42.048	26.96	101.3	10.2	8.23	1.10
Deploy	11/21/2023	09:58	7.48	42.048	26.96	101.3	10.2	8.23	1.10
Retrieve	12/04/2023	12:04	8.09	42.458	27.03	98.6	9.78	7.94	1.10

Table 4: Sage Lot (SL) Deployment/Retrieval EXO1 Data

							DO		
	Date	Time	Temp	SpCond	Salinity	DO %	Conc.	рН	Depth
CR	M/D/Y	hh:mm	С	mS/cm	ppt	%	mg/L		m
Deploy	03/27/2023	15:12	11.61	46.401	30.04	119.8	10.77	7.98	0.876
Retrieve	05/08/2023	15:10	18.37	42.566	27.42	113.3	9.02	7.95	1.04
Deploy	05/08/2023	15:10	18.37	42.566	27.42	113.3	9.02	7.95	1.04
Retrieve	04/10/2023	12:37	13.55	44.16	28.50	149.9	13.09	8.17	0.913
Deploy	04/10/2023	12:37	13.55	44.16	28.50	149.9	13.09	8.17	0.913
Retrieve	06/12/2023	15:02	22.4	42.601	27.42	101.3	7.55	8.07	1.01
Deploy	06/12/2023	15:02	22.4	42.601	27.42	101.3	7.55	8.07	1.01
Retrieve	07/13/2023	12:01	27.79	42.200	27.02	91.7	6.17	7.79	0.938
Deploy	07/13/2023	12:01	27.79	42.200	27.02	91.7	6.17	7.79	0.938
Retrieve	08/14/2023	14:38	25.08	40.09	25.58	107.7	7.69	8.00	0.544
Deploy	08/14/2023	14:38	25.08	40.09	25.58	107.7	7.69	8.00	0.544
Retrieve	09/11/2023	11:37	26.05	43.06	27.68	84.3	5.85	7.94	1.11

Deploy	09/11/2023	11:37	26.05	43.06	27.68	84.3	5.85	7.94	1.11
Retrieve	10/10/2023	11:46	15.70	41.93	26.96	94.2	7.94	8.02	1.15
Deploy	10/10/2023	11:46	15.70	41.93	26.96	94.2	7.94	8.02	1.15
Retrieve	11/07/2023	09:43	11.7	41.585	26.61	96.1	8.82	8.00	0.85
Deploy	11/07/2023	09:43	11.7	41.585	26.61	96.1	8.82	8.00	0.85
Retrieve	12/04/2023	10:36	-	-	-	-	-	-	1