Weeks Bay (WKB) NERR Nutrient Metadata

January - December 2009

Last Updated: September 10, 2014

I. Data Set and Research Descriptors

1) Principal Investigator(s) and Contact Persons:

Address: Weeks Bay NERR

11300 Highway 98 Fairhope, Al 36532 Phone: (251)928-9792 Fax: (251)928-1792

Contact Persons: Dr. Scott Phipps, Research Coordinator

E-mail: scott.phipps@dcnr.alabama.gov

(251)928-9792

Eric Brunden, Stewardship Coordinator E-mail: eric.brunden@dcnr.alabama.gov

(251)928-9792

2) Research objectives:

a) Monthly Grab

Monthly grab samples were collected to quantify the spatial variability of important nutrients in the water column between sites representing the local salinity gradient.

b) Diel Sampling Program

Once per month, twelve samples were collected throughout a tidal cycle to quantify the temporal variability of important nutrients and sediment loading in the water column as a function of tidal forcing.

3) Research methods:

a) Monthly Grab Sampling Program

Monthly grab samples were taken at the four primary SWMP stations (also datasonde locations) within the Weeks Bay estuary: Weeks Bay (WB) Middle Bay (MB) Magnolia River (MR) and Fish River (FR). Grab samples were collected within one hour prior to slack low tide. When possible, sampling dates were during spring tide conditions. Rainfall conditions *prior* to grab sampling were not considered. Grab samples were obtained in conjunction with the deployment of an Isco 3700 portable sampler. (See 3b) Triplicate samples were collected sequentially using a FieldMasterTM sample collection device lowered to 0.5 meters from the bottom (sample collection times for replicates were advanced by one

minute for database purposes). Water temperature, salinity, pH, dissolved oxygen and turbidity data for each grab sample can be obtained by correlating grab sample collection dates and time with datasonde data available via the Central Data Management Office website (http://cdmo.baruch.sc.edu/). All samples were collected in opaque, 500ml, Nalgene® sample bottles that were previously acid washed and then rinsed with distilled water. Samples were immediately placed on ice and stored in a dark cooler then returned to the laboratory. Once in the laboratory samples were processed for nutrient and chlorophyll a analysis. (See 8b)

b) Diel Sampling Program

At the FR sit, twelve samples are collected each month using an Isco 3700 portable auto sampler. Sampler was programmed to make one 1000 mL collection approximately every 133 minutes throughout a complete tidal cycle (12 samples evenly spaced over a predicted tidal cycle). Samples were collected under spring tide conditions. Samples are stored on ice in 1000ml semi-transparent Isco containers within the body of the sampler. Sample containers are acid washed and rinsed with distilled water prior to sampler deployment. Sampler was programmed to flush collection line 3 times prior to sample uptake. As soon as possible after the final collection time the samples were returned to the laboratory for nutrient, solids and Chla analysis.

4) Site Location and Character

Weeks Bay (30 23' N, 87 50' W) is a small, shallow, microtidal sub-estuary, located on the eastern shore of Mobile Bay in the northern Gulf of Mexico. It is nearly diamond shaped, and its longitudinal axis (3.4 km long) runs nearly north-south from the head, where the Fish River flows in, to the mouth, where water is exchanged with Mobile Bay. Its widest point (3.1 km) is located near the center of the estuary, where the Magnolia River discharges into the eastern side of Weeks Bay. Average depth is 1.4 m, although there are two areas where depths are significantly greater. The first is in the mouth of the bay, where the average depth is 6 m; the second is about 100 m upstream of the mouth of the Fish River, where the average depth is 3.5 m. Tides are principally diurnal, and have a mean range of 0.4 m at all 4 sampling sites in the estuary.

The Fish River drainage basin encompasses 14300 hectares and contributes approximately 73% to the total incoming freshwater flow with the Magnolia River supplying the rest. Mean combined discharge is 9 cubic meters per second; although freshets up to 4 times larger occur throughout the year. These characteristics result in a freshwater residence time of 13 days under average discharge conditions, with a range from 0.5 to 100 days. Salinity in Weeks Bay varies substantially both temporally and spatially. During periods of high flow in the river, salinity in the bay may be fresh from the head to the mouth, except in the deeper holes of the estuary that are not as easily flushed. However, during periods of low flow in the river, wind velocity and tidal stage are strong factors influencing salinity structure. Salinity greater than 25 ppt is infrequently observed in Weeks Bay and is usually restricted to the southern portion of the estuary near the mouth. There are no known pollutants in the estuary.

Site FR (Fish River; 30 24.97'N, 87 49.37'W) is located near the mouth of Fish River at a mean depth of about 2m. Sediment type is sandy-silt, and there are small patches of Vallisneria sp. growing near (but not directly under) the Data logger. Land use in the water shed is agricultural, forested and residential with the residential portion rapidly increasing. Directly surrounding the site, land use is residential and forested. Nutrient concentrations at this site are variable and may be quite high, with nitrate and phosphate concentrations ranging from approximately 4-100 μM and <0.5 to 7.5 μM, respectively, over the previous 10 years (Alabama Department of Environmental Management, Geological Survey of Alabama). Over the past year, salinity ranged from 0 to 25 ppt at this site. The diel sampling program occurs at this site.

Site WB (Weeks Bay; 30 22.85' N, 87 49.92' W) is located near the southeast shore of Weeks Bay, about 0.5 kilometers from the mouth of the estuary. Mean water depth at this site is about 0.9 m; sediment type is sandy-silt. Land use around this site is almost exclusively residential, with agriculture occurring inland. Nutrient concentrations are much lower at this site than at site Fish River. Over the previous 10 years, nitrate and phosphate concentrations here ranged from approximately 0.1 to 50 μ M and 0.04 to 0.45 μ M, respectively. Salinity ranged from approximately 5 to 27 ppt over the past year.

Site MB (Middle Bay; 30 23.768 N, 87 50.010 W) is located near the middle of Weeks Bay, approximately 1.1 kilometers from the southeastern shoreline. Mean water depth at this site is 1.5m. Bottom sediments are a soft silty-clay with no sub-aquatic vegetation present. Salinity ranges from 0 to 25ppt.

Site MR (Magnolia River; 30 23.398 N, 87 49.059 W) is located near the mouth of the Magnolia River. Mean water depth at this site is 1.1m. Bottom sediments are silty-clay. Salinity ranges from 0 to 24 ppt. The site is approximately twenty meters from the southern shoreline. A bottomland hardwood forest interspersed with patches of woody shrubs dominates the southern shoreline. Approximately forty meters north of the site is a needle rush dominated marsh which extends approximately 200 meters along the Magnolia river and along the north and east fringes of the bay.

5) Coded variable definitions

- a) Station codes (column 'A' of nutrient data report):
 wkbwbnut = Weeks Bay NERR, site Weeks Bay nutrient data
 wkbfrnut = Weeks Bay NERR, site Fish River nutrient data
 wkbmrnut = Weeks Bay NERR, site Magnolia River nutrient data
 wkbmbnut = Weeks Bay NERR, site Middle Bay nutrient data
- b) Monitoring program (column "C" of nutrient data report):
 - 1 = Monthly grab sample
 - 2 = Diel grab sample

c) Nutrient parameter comment code columns (denoted with a 'F_' and found in columns immediately following reported data variable. Refer to section 10 for parameter titles and variable names by data category.)

6) Data collection period

The first water samples collected for 2009 SWMP nutrient monitoring program occurred on January 12 at 08:00 and the last was collected on December 14 at 0830. Individual collection dates and times for both the monthly grab program and diel program are reported below

Monthly Grab Samples

Site wkbwb

1/12/2009 0800

2/24/2009 0600

3/22/2009 0700

4/27/2009 1000

5/24/2009 1930

6/29/2009 1645

7/21/2009 0800 8/18/2009 1845

9/14/2009 1700

10/21/2009 0915

11/17/2009 0730

11/11/2005 0750

12/14/2009 0745

Site wkbmb

1/12/2009 0815

2/24/2009 0615

3/22/2009 0715

4/27/2009 1015

5/24/2009 1945

6/29/2009 1700

7/21/2009 0815

8/18/2009 1900

9/14/2009 1715

10/21/2009 0930

11/17/2009 0745

12/14/2009 0800

Site wkbmr

1/12/2009 0830

2/24/2009 0630

3/22/2009 0730

4/27/2009 1030

5/24/2009 2000

6/29/2009 1715 7/21/2009 0830

7/2 1/2000 0000

8/18/2009 1915

9/14/2009 1730

10/21/2009 0945 11/17/2009 0800 12/14/2009 0815

Site wkbfr

1/12/2009 0845 2/24/2009 0646 3/22/2009 0745 4/27/2009 1045 5/24/2009 2015

6/29/2009 1730

7/21/2009 0845

8/18/2009 1930 9/14/2009 1745

9/14/2009 1745

10/21/2009 1000 11/17/2009 0815

12/14/2009 0830

12/14/2009 003

Diel Samples

Site wkbfr

1/12/2009 0945	1/13/2009 0935
2/23/2009 0945	2/24/2009 0645
3/22/2009 0700	3/23/2009 0750
4/26/2009 1020	4/27/2009 1105
5/24/2009 1027	5/25/2009 1127
6/29/2009 1945	6/29/2009 1745
7/20/2009 0825	7/21/2009 0815*
8/18/2009 2000	8/19/2009 2034
9/13/2009 1705	9/14/2009 1802
10/20/2009 0900	10/21/2009 0901
11/16/2009 0750	11/17/2009 0735
12/13/2009 0645	12/14/2009 0730

^{*}These samples were not collected.

7) Associated researchers and projects

As part of the SWMP long-term monitoring program, WKB NERR also monitors Meteorological and Water Quality data which may be correlated with this Nutrient dataset. These data are available from the Research Coordinator or online at http://cdmo.baruch.sc.edu/.

Additional information regarding associated researchers and projects may be obtained by contacting Dr. Scott Phipps.

8) Distribution

NOAA/ERD retains the right to analyze, synthesize and publish summaries of the NERRS System-wide Monitoring Program data. The PI retains the right to be fully credited for having collected and processed the data. Following academic courtesy standards, the PI and NERR site where the data were collected will be contacted and fully acknowledged in any subsequent publications in which

any part of the data are used. Manuscripts resulting from this NOAA/OCRM supported research that are produced for publication in open literature, including refereed scientific journals, will acknowledge that the research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. The data set enclosed within this package/transmission is only as good as the quality assurance and quality control procedures outlined by the enclosed metadata reporting statement. The user bears all responsibility for its subsequent use/misuse in any further analyses or comparisons. The Federal government does not assume liability to the Recipient or third persons, nor will the Federal government reimburse or indemnify the Recipient for its liability due to any losses resulting in any way from the use of this data.

NERR water quality / nutrient data and metadata can be obtained from the Research Coordinator at the individual NERR site (please see Section 1. Principal investigators and contact persons), from the Data Manager at the Centralized Data Management Office (please see personnel directory under the general information link on the CDMO home page) and online at the CDMO home page http://cdmo.baruch.sc.edu. Data are available in text tab-delimited format.

II. Physical Structure Descriptors:

9) Entry verification

Samples were collected and analysis performed in accordance with Weeks Bay National Estuarine Research Reserve's Standard Operating Procedures for Water Chemistry. Analysis data was recorded in both a laboratory log book and electronically in spreadsheet form. This data was then transferred in general formatting into the comprehensive Excel form employed by the NERR system for yearly reporting purposes. Data was checked twice for transfer accuracy. Christine Walters was responsible for these tasks.

Nutrient data are entered into a Microsoft Excel worksheet and processed using the NutrientQAQC Excel macro. The NutrientQAQC macro sets up the data worksheet, metadata worksheets, and MDL worksheet; adds chosen parameters and facilitates data entry; allows the user to set the number of significant figures to be reported for each parameter and rounds using banker's rounding rules; allows the user to input MDL values and then automatically flags/codes measured values below MDL and inserts the MDL; calculates parameters chosen by the user and automatically flags/codes for component values below MDL, negative calculated values, and missing data; allows the user to apply QAQC flags and codes to the data; produces summary statistics; graphs selected parameters for review; and exports the resulting data file to the CDMO for tertiary QAQC and assimilation into the CDMO's authoritative online database. Christine Walters was responsible for these tasks.

10) Parameter titles and variable names by data category. Required NOAA/NERRS System-wide Monitoring Program nutrient parameters are denoted by an asterisks "*".

Laboratory parameters

<u>Data Category</u> Phosphorous	Parameter Total Dissolved Phosphorous Orthophosphate, filtered Dissolved Organic Phosphate	Variable TDP PO4F* DOP	Unit mg/L as P mg/L as P mg/L as P
Nitrogen	Nitrite + Nitrate, filtered Nitrite, filtered Nitrate, filtered Ammonium, filtered Dissolved Inorganic Nitrogen	NO23F* NO2F* NO3F* NH4F* DIN	mg/L as N mg/L as N mg/L as N mg/L as N mg/L as N
Plant pigments	Chlorophyll a	CHLA_N*	ug/L

Notes:

- 1. Time is coded based on a 2400 clock and is referenced to Local Standard Time.
- 2. Reserves have the option of measuring either NO2 and NO3 or they may substitute NO23 for individual analyses if they can show that NO2 is a minor component relative to NO3.

11) Measured and Calculated Laboratory Parameters

a) Parameters measured directly

Nitrogen species: NO23F, NO2F, NH4F

Phosphorus species: PO4F, TDP

Other: CHLA_N

b) Calculated parameters

Nitrogen species:

NO3F = NO23F - NO2FDIN = NO23F + NH4F

Phosphorus species:

DOP = TDP - PO4F

12) Limits of detection

Method Detection Limit (MDL), the lowest concentration of a parameter that an analytical procedure can reliably detect, has been established by the Weeks Bay laboratory technicians for each parameter. The MDL is determined as 3 times the standard deviation of a minimum of 7 replicates of a single low concentration sample.

	Start		
Parameter	Date	End Date	MDL
CHLA_N	1/1/2009	12/31/2009	.01
NH4F	1/1/2009	12/31/2009	.005

NO23F	1/1/2009	12/31/2009	.005
NO2F	1/1/2009	12/31/2009	.001
PO4F	1/1/2009	12/31/2009	.001
TDP	1/1/2009	12/31/2009	.005

13) Laboratory Methods

a) Parameter: Chlorophyll *a*

Method References:

Weeks Bay National Estuarine Research Reserve - SOP Standard Methods for the Examination of Water and Wastewater, 20th edition. p 10-18. 10200 H. Chlorophyll - Fluorometric Determination of Chlorophyll. EPA Method 445.0 *In Vitro* Determination of Chlorophyll *a* by Fluorescence revision 1.2 pp. 22.

Method Descriptor:

Instrumentation: Fluorometer (Turner Designs Trilogy)

The method used requires filtering a known quantity of water through a glass fiber filter (4.7 cm GF/F). This filter is stored dry in a freezer at -20°C until extraction. In preparation for extraction, the filter is placed in a 15 mL centrifuge tube with 10mLs of DMSO/aqueous acetone solution. The tube is then placed in a dark freezer for a minimum of 1 hour for extraction. After extraction is complete, the tube is removed from the freezer and stored in a dark room for 30 minutes to allow for temperature equilibration. Three milliliters of the sample is then removed from the tube and placed in a 1.0 cm glass (or methacrylate) fluorometer cell. Fluorescence is read at excitation = 485 nm and emission = 685 nm (note: emission filter must be accurate to within 10 nm). Chlorophyll a concentration of the sample is determined by comparison with a standard curve of known chlorophyll a concentrations. The Turner Designs Trilogy performs this determination automatically against a standard curve with known concentrations that has been programmed into its memory.

Preservation Method:

A known quantity of water is filtered through a glass fiber filter (4.7 cm GF/F). This filter is stored dry in a freezer at -20°C until extraction.

c) Parameter: Ammonia

Method References:

Weeks Bay National Estuarine Research Reserve - SOP Standard Methods for the Examination of Water and Wastewater, 20th edition. p 4-108. 4500-NH₃ F. Phenate Method.

Method Descriptor:

Instrumentation: Spectrophotometer (Spectronic Genesys 5).

An intensely blue compound, indophenol, is formed by the reaction of ammonia, hypochlorite, and phenol catalyzed by sodium nitroprusside. The indophenol blue is proportional to the ammonia concentration. The color develops at room temperature (22 to 27°C) in subdued light after 1 hour and is stable for 24 hours. Absorbance is measured with a spectrophotometer at 640 nm.

Preservation Method:

Sample is filtered as soon as possible after collection. Ammonia analysis is begun as soon after filtering as possible. If necessary, samples can be held in a refrigerator at 4°C for a short period of time until analysis.

d) Parameter: Nitrite

Method References:

Weeks Bay National Estuarine Research Reserve - SOP Standard Methods for the Examination of Water and Wastewater, 20th edition. p 4-112. 4500-NO₂- B. Colorimetric Method.

Method Descriptor:

Instrumentation: Spectrophotometer (Spectronic Genesys 5).

Nitrite is determined through formation of a reddish purple dye produced at pH 2.0 to 2.5 by coupling diazotized sulfanilamide with N-(1-naphthyl)-ethylenediamine dihydrochloride (NED dihydrochloride). The color system obeys Beer's law up to $180 \mu g$ N/L with a 1-cm light path at $543 \mu g$ nm.

Preservation Method:

Sample is filtered as soon as possible after collection. Nitrite analysis is begun as soon after filtering as possible. If necessary, samples can be held in a refrigerator at 4°C for a short period of time until analysis.

e) Parameter: Nitrite + Nitrate

Method References:

Weeks Bay National Estuarine Research Reserve - SOP Standard Methods for the Examination of Water and Wastewater, 20th edition. p 4-117. 4500-NO₃⁻ E. Cadmium Reduction Method.

Method Descriptor:

Instrumentation: Spectrophotometer (Spectronic Genesys 5).

Nitrate is reduced almost quantitatively to nitrite in the presence of cadmium (Cd). This method uses commercially available Cd granules treated with copper sulfate and packed in a glass column. The nitrite produced thus is determined by diazotizing with sulfanilamide and coupling with N-(1-naphthyl)-ethylenediamine dihydrochloride to form a highly colored azo dye that is measured colorimetrically.

Preservation Method:

Sample is filtered as soon as possible after collection. Analysis is begun as soon after filtering as possible. If necessary, samples can be held in a refrigerator at 4°C for a short period of time until analysis.

f) Parameter: Orthophosphate (Dissolved Reactive Phosphorus)

Method References:

Weeks Bay National Estuarine Research Reserve - SOP Standard Methods for the Examination of Water and Wastewater, 20th edition. p 4-146. 4500-P E. Ascorbic Acid Method.

Method Descriptor:

Instrumentation: Spectrophotometer (Spectronic Genesys 5).

Ammonium molybdate and potassium antimonyl tartrate react in acid medium with orthophosphate to form a heteropoly acid – phosphomolybdic acid – that is reduced to intensely colored molybdenum blue by ascorbic acid. Measure absorbance of each sample at 880 nm.

Preservation Method:

Sample is filtered as soon as possible after collection. Analysis is begun as soon after filtering as possible. If necessary, samples can be held in a refrigerator at 4°C for a short period of time until analysis.

g) Parameter: Total Dissolved Phosphorus

Method References:

Weeks Bay National Estuarine Research Reserve - SOP Standard Methods for the Examination of Water and Wastewater, 20th edition. p 4-142. 4500-P B. 5. Persulfate Digestion Method. Then method 4500-P E. Ascorbic Acid Method (see above).

Method Descriptor:

Instrumentation: Spectrophotometer (Spectronic Genesys 5).

Di, tri, poly and organic phosphates are oxidized to mono-phosphates using K₂S₂O₈ (potassium persulphate) and heat. Mono-phosphates are then determined using the Ascorbic Acid Method outlined above (see Dissolved Reactive Phosphate).

Preservation Method:

Sample is filtered as soon as possible after collection. Analysis is begun as soon after filtering as possible. If necessary, samples can be held in a refrigerator at 4°C for a short period of time until analysis.

14) Field and Laboratory QA/QC programs

a) Precisions:

- i) Field Variability True field replicates are taken at each site during grab sampling (N=3). Each replicate is a successive grab. Sample XXXXXX-G1 is taken and then sampler emptied. The grab sampler is deployed once again to acquire XXXXXX-G2 and then again to collect XXXXXX-G3.
- ii) Laboratory variability none
- iii) Inter-organizational splits Samples were not split or analyzed by two different labs.

b) Accuracy:

- i) Sample spikes information unavailable
- ii) Standard reference material analysis information unavailable
- iii) Cross calibration exercises WKB NERR did not participate in cross calibration exercises.

15) QAQC flag definitions

QAQC flags provide documentation of the data and are applied to individual data points by insertion into the parameter's associated flag column (header preceded by an F_). QAQC flags are applied to the nutrient data during secondary QAQC to indicate data that are out of sensor range low (-4), rejected due to QAQC checks (-3), missing (-2), optional and were not collected (-1), suspect (1), and that have been corrected (5). All remaining data are flagged as having passed initial QAQC checks (0) when the data are uploaded and assimilated into the CDMO ODIS as provisional plus data. The historical data flag (4) is used to indicate data that were submitted to the CDMO prior to the initiation of secondary QAQC flags and codes (and the use of the automated primary QAQC system for WQ and MET data). This flag is only present in historical data that are exported from the CDMO ODIS.

- -4 Outside Low Sensor Range
- -3 Data Rejected due to QAQC
- -2 Missing Data
- -1 Optional SWMP Supported Parameter
- 0 Data Passed Initial QAQC Checks
- 1 Suspect Data
- 4 Historical Data: Pre-Auto QAQC
- 5 Corrected Data

16) QAQC code definitions

QAQC codes are used in conjunction with QAQC flags to provide further documentation of the data and are also applied by insertion into the associated flag column. There are three (3) different code categories, general, sensor, and comment. General errors document general problems with the sample or sample collection, sensor errors document common sensor or parameter specific problems, and

comment codes are used to further document conditions or a problem with the data. Only one general or sensor error and one comment code can be applied to a particular data point. However, a record flag column (F_Record) in the nutrient data allows multiple comment codes to be applied to the entire data record.

General errors

GCM	Calculated value could not be determined due to missing data
GCR	Calculated value could not be determined due to rejected data
GDM	Data missing or sample never collected
GQD	Data rejected due to QA/QC checks
GQS	Data suspect due to QA/QC checks

Sensor errors

nsor error	'S
SBL	Value below minimum limit of method detection
SCB	Calculated value could not be determined due to a below MDL
	component
SCC	Calculation with this component resulted in a negative value
SNV	Calculated value is negative
SRD	Replicate values differ substantially
SUL	Value above upper limit of method detection

Parameter Comments

rameter C	omments
CAB	Algal bloom
CDR	Sample diluted and rerun
CHB	Sample held beyond specified holding time
CIP	Ice present in sample vicinity
CIF	Flotsam present in sample vicinity
CLE	Sample collected later/earlier than scheduled
CRE	Significant rain event
CSM	See metadata
CUS	Lab analysis from unpreserved sample

Record comments

cora com	IIICIIIS
CAB	Algal bloom
CHB	Sample held beyond specified holding time
CIP	Ice present in sample vicinity
CIF	Flotsam present in sample vicinity
CLE	Sample collected later/earlier than scheduled
CRE	Significant rain event
CSM	See metadata
CUS	Lab analysis from unpreserved sample
~•	

Cloud cover

```
CCL clear (0-10%)
```

CSP scattered to partly cloudy (10-50%)

CPB partly to broken (50-90%)

COC overcast (>90%)

CFY foggy CHY hazy

CCC cloud (no percentage)

Precipitation

PNP none

PDR drizzle

PLR light rain

PHR heavy rain

PSQ squally

PFQ frozen precipitation (sleet/snow/freezing rain)

PSR mixed rain and snow

Tide stage

TSE ebb tide

TSF flood tide

TSH high tide

TSL low tide

Wave height

WH0 0 to < 0.1 meters

WH1 0.1 to 0.3 meters

WH2 0.3 to 0.6 meters

WH3 0.6 to > 1.0 meters

WH4 1.0 to 1.3 meters

WH5 1.3 or greater meters

Wind direction

N from the north

NNE from the north northeast

NE from the northeast

ENE from the east northeast

E from the east

ESE from the east southeast

SE from the southeast

SSE from the south southeast

S from the south

SSW from the south southwest

SW from the southwest

WSW from the west southwest

W from the west

WNW from the west northwest

NW from the northwest

NNW from the north northwest

Wind speed

WS0 0 to 1 knot

WS1 > 1 to 10 knots

WS2 > 10 to 20 knots

WS3 > 20 to 30 knots

WS4 > 30 to 40 knots

WS5 > 40 knots

17) Other remarks/notes

Data may be missing due to problems with sample collection or processing. Laboratories in the NERRS System submit data that are censored at a lower detection rate limit, called the Method Detection Limit or MDL. MDLs for specific parameters are listed in the Laboratory Methods and Detection Limits Section (Section II, Part 12) of this document. Concentrations that are less than this limit are censored with the use of a QAQC flag and code, and the reported value is the method detection limit itself rather than a measured value. For example, if the measured concentration of NO23F was 0.0005 mg/l as N (MDL=0.0008), the reported value would be 0.0008 and would be flagged as out of sensor range low (-4) and coded SBL. In addition, if any of the components used to calculate a variable are below the MDL, the calculated variable is removed and flagged/coded -4 SCB. If a calculated value is negative, it is rejected and all measured components are marked suspect. If additional information on MDL's or missing, suspect, or rejected data is needed, contact the Research Coordinator at the Reserve submitting the data.

Note: The way below MDL values are handled in the NERRS SWMP dataset was changed in November of 2011. Previously, below MDL data from 2007-2010 were also flagged/coded, but either reported as the measured value or a blank cell. Any 2007-2011 nutrient/pigment data downloaded from the CDMO prior to November of 2011 will reflect this difference.