WELLS (WEL) National Estuarine Research Reserve Water Quality Metadata Report

January-December 2000

Latest Update: July 1, 2021

- I. Data Set & Research Descriptors
- 1. Principal investigator(s) & contact persons:

Dr. Michele Dionne, Research Coordinator

E-mail: dionne@wellsnerrcec.lib.me.us

Phone: ext. 136

Scott Orringer, Research Associate

E-mail: sorringer@wellsnerrcec.lib.me.us

Phone: ext. 112

Wells NERR

342 Laudholm Farm Road

Wells, ME 04090

Phone: (207) 646-1555 FAX: (207) 646-2930

# 2. Entry verification:

The data are directly downloaded in the YSI-PC6000 format (as a .dat file) and

the Comma Delimited format (as a .csv file) from the dataloggers to an IBM lap-  $\,$ 

top. The data are reviewed using the PC6000 software (Eco-Watch). Graphs and

basic statistics are then generated with the Eco-Watch program and the information is printed out for each data file. These graphs are used to determine any obvious data outliers and sonde and/or probe malfunction. All

downloaded data files from the dataloggers (both raw unedited .dat and .csv  $\,$ 

files) are then transferred via disk to a Power Mac G3, where all files are

reviewed and  $\mbox{formatted for CDMO}$  and  $\mbox{stored.}$  Here the raw unedited .csv data

files are imported into Microsoft Excel 98. After a complete month of data has

been recorded, each file is ready to review which requires several steps. The

NERR CDMO QA/QC Excel macros are used for all data. A data file is created

(from the merged raw unedited .csv data files) in Excel format with a full month

of data. The first step is to make sure that the parameter columns are in the  $\ensuremath{\mathsf{I}}$ 

correct order, specified by the NERR CDMO. If any parameters are not collected  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

due to probe failure or other causes, the cells with this missing data are

filled in with periods (.) and documented and explained in the appropriate

section of the metadata. Secondly, missing dates and times are inserted in the

data file where data were not collected due to maintenance, sonde failure, etc.,

and the cells with this missing data are filled in with periods (.) and documented and explained in the appropriate section of the metadata. The first

NERR CDMO QA/QC Excel macro is then run to determine if there are any missing

dates and times; and if so these missing dates and times are inserted. Next,

the second NERR CDMO QA/QC Excel macro is used to find and filter all data

readings outside the sonde specification measuring range for each parameter.

Here the outlier data generated by the second macro are examined and determined

as either explained or unexplained anomalies, as specified by NERR CDMO Operations Manual (Version 3.0). All anomalous data (explained and

unexplained) are documented and explained in the appropriate sections of the

metadata. The explained anomalous data are then removed from the data file and

replaced by periods. The unexplained anomalous data are investigated for validity based on weather data, field observations, instrument diagnostics, and

Eco-Watch printouts. If these data are rejected from the file then these are

removed and replaced by periods. Lastly, the third and final NERR CDMO  ${\tt QA/QC}$ 

Excel macro is used to reformat all the columns in the data file to the  $\operatorname{correct}$ 

number of significant digits. After this last step, once the file has been

completely formatted and edited as specified by NERR CDMO, the file is saved as  $\ensuremath{\mathsf{S}}$ 

a Tab delimited (.txt) text file and sent by FTP to the CDMO. The metadata form

is also submitted with the data file to the CDMO, sent also as a text file (text  $% \left( 1\right) =\left( 1\right) +\left( 1\right) =\left( 1\right) +\left( 1\right) +\left$ 

only with line breaks). Scott Orringer is responsible for this task of entry

verification with the analyses of suspect and anomalous data. Michele

supervises, proofs and answers questions with the evaluation of suspect and  $% \left( 1\right) =\left( 1\right) +\left( 1\right)$ 

anomalous data.

The use of the newest (Version 2.0) National Estuarine Research Reserve (NERR)

System-Wide Monitoring Program (SWMP) YSI 6-Series Multi-Parameter Water Quality

Monitor Standard Operating Procedures began in July 1999 when they became available.

### 3. Research objectives:

The Webhannet River estuary is located in proximity to heavily used beaches in Wells, Maine. It has a shoreline that is highly developed with

residential and commercial structures. The estuary receives water from a  $14\ \mathrm{sg}$ .

mi. watershed that is well forested. We are measuring variations in hydrologic

variables in the Webhannet River estuary at the Head of Tide and at the Inlet.

Data from Head of Tide will integrate surface and ground water inputs (from both

point and non-point sources) from the freshwater watershed into the estuary.

Data from the Inlet will integrate surface and ground water inputs from the

freshwater watershed and the estuarine watershed. Differences in data between

the Head of Tide and the Inlet will indicate inputs from the estuarine portion

of the watershed (on the  $\mbox{ebb}$  tide), and inputs from the Gulf of Maine on the

flood tide. The instruments will track runoff events via salinity, and will

measure pollutant-carrying sediment particles via turbidity. Our working hypothesis is that the freshwater watershed is the primary source of sediment

and therefore potential NPS pollutants in the estuary. These two variables will

indicate the potential for non-point source pollutants to enter the estuary, and

whether they are of upland, estuarine or Gulf of Maine origin. Other variables

measured by the data loggers (DO, temperature, pH, specific conductivity, and

water level) will provide important baseline data to track changes in the estuary's physico-chemical parameters over the long term. These variables can

be affected by changes in human water use, and by natural or human induced  $% \left( 1\right) =\left( 1\right) +\left( 1\right)$ 

changes in Inlet and river channel morphology, climate, and organic loadings.

The Inlet site is heavily impacted at the Wells Harbor dock and is our long-term

monitoring site. The Head of Tide site is relatively unimpacted, located just

east of the Route One bridge, and is our roving site.

## 4. Research Methods:

The Wells NERR YSI monitoring program began in April 1995 at one site

(Head of Tide site-HT) and May 1995 at a second site (Inlet site-IN) in the

Webhannet River estuary. The two data loggers are installed with bottom moorings, as described below. Both data loggers have 1/4 inch black vector mesh

placed on the outside (using rubber bands) of the sonde guard to prevent fouling

and unwanted animals. All deployment structures (PVC tubes) described below are

labeled with the Wells NERR information.

\*IMPORTANT CHANGES TO NOTE AT THE INLET SITE (IN); where our telemetry unit is

stationed: A new vented level YSI 6600 with its new vented level cable was

deployed to collect its first data on 5/4/99 at 12:00. The YSI telemetry unit

began collecting its first data on 3/16/98 at 10:30:00.

ALSO-at the Inlet site (IN): No data collected from 4/6 12:30 through 4/13 17:30

due to a telemetry unit crash; caused by a major leak through the vented-level

cable causing data sonde corrosion at the cable/sonde interface. From 4/13

18:00 through 5/30 9:30 a non-vented level YSI 6000 was used in its place, as

both the vented-level cable and YSI 6600 were sent back to YSI for repairs.

The Inlet site (IN) deployment methods are different than the other site (HT),

due to the installation of a YSI telemetry unit. A 23 foot, 4-inch diameter

high-grade PVC tube was installed against a dock piling. Four steel flat bars

with bolts were used to attach this 23-foot PVC tube against the dock piling.

A 3 by 1.5 inch PVC transducer was glued on the inside bottom of the PVC tube to

allow the sonde to sit exactly  $1.0~\mathrm{meter}$  ( $3.28~\mathrm{ft}$ ) off the bottom. Several

vertical holes, representative of the sonde guard, were cut out the circumference near the bottom of the PVC pipe to allow water flow to the probes.

An L-shaped steel bar with two end-holes is placed through two created slits

about a half of foot from the top of the PVC tube. A stainless steel wire

(1/16) is attached to the sonde bail using two stainless steel clips; and to one

end of the L-shaped steel bar for sonde deployment and retrieval. A marine lock

is attached through the other end of the L-shaped steel bar to hold the bar,

wire, and sonde in place and for security. A PVC threaded cap screws in to the

threaded top of the PVC tube, also for security. A hole was created in the PVC  $\,$ 

cap to allow the sonde to hook up with the telemetry unit using the 50 foot

cable. The collection of data parameters at the Inlet (IN) site are slightly

different then at the roving (HT) site, due to the telemetry unit installation.

Two to four week variable sampling periods were chosen due to limitations created by the life of the dissolved oxygen membrane and probe fouling. Battery power is not needed anymore within the sonde itself (although, battery

power is needed during calibrations and downloading) at the time of deployment

at this site because of the telemetry unit's solar batter power. Measurements

of temperature, specific conductivity, salinity, percent saturation, dissolved

oxygen, depth, pH, and turbidity are recorded at 30 minute intervals throughout

the deployment period. Time, date, and battery voltage are no longer programmed

to be recorded by the sonde, since these parameters are already programmed with  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

the Eco-Watch Program (see YSI¹s Eco-Watch Users Guide).

The other site, Head of Tide (HT), is deployed similarly, except for sonde

height off the bottom (see below). This site uses a  $5\ \text{foot}$ ,  $4\ \text{inch}$  diameter

high grade PVC tube. The PVC tube is attached to a 12 foot, heavy steel sign

post using a stainless steel bolt at the bottom of the tube, a stainless steel

cable wrap at the top, and several thick electrical cable ties in between. The

steel sign post was pounded in about 7 feet into the river bottom, such that the

bottom of the PVC tube was flat on the river bottom. The PVC tube has one  $3\ \mathrm{by}$ 

1.5 inch PVC transducer glued on the inside bottom of the PVC tube to allow the  $\$ 

sonde to sit exactly at a certain height off the bottom (see below). Several  $\ensuremath{\mathsf{Several}}$ 

vertical holes, representative of the sonde guard, were cut out the circumference near the bottom of the PVC pipe to allow water flow to the probes.

An L-shaped steel bar with two end-holes is placed through two created slits

about a half of foot from the top of the PVC tube. A stainless steel wire

(1/16) is attached to the sonde bail using two stainless steel clips; and to one

end of the L-shaped steel bar for sonde deployment and retrieval. A marine lock

is attached through the other end of the L-shaped steel bar to hold the bar,

wire, and sonde in place and for security. A flotation buoy is tied to the  ${\mbox{PVC}}$ 

tubes incase the deployment structure ever gets dislodged. The deployment depth

for the Head of Tide site (HT) is such that the probe-end of the data logger is

secured 0.30 meters (1.0 ft) off the bottom.

Two to four week variable sampling periods were chosen for the data sonde  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +$ 

due to limitations created by the life of the dissolved oxygen membrane, probe

fouling, and limited battery power. Measurements of temperature, specific

conductivity, salinity, percent saturation, dissolved oxygen, depth, pH, and

turbidity are recorded at 30 minute intervals throughout the deployment period.

After the deployment period, the data logger is brought back into

Wells Reserve Laboratory for downloading, cleaning, and calibration. These

procedures are carried out to the methods described in the YSI Operating Manual.

Calibration standards are needed and used for only specific conductivity (10)

 $\mbox{mS/cm})\,,$  pH (buffer solutions of pH 4, 7, and 10), and turbidity (100 NTU).

standards are purchased from Advanced Polymer Systems, Inc. (Redwood City, CA).

The dissolved oxygen membranes are replaced and sit 6-24 hours before each

deployment. After approximately 6-24 hours of down time for cleaning, maintenance and recalibration, the YSI Data logger is redeployed for another

sampling period. Also, with our extra data sonde, we have been reducing the

amount of time of missing data from calibrations and maintenance for this site.

Note: The Wells NERR two Drakes Island sites (see 1996-1997 metatdata) are

currently being monitored (since 1996), but we are using the data for another  $\frac{1}{2}$ 

project (CICEET-Wells Harbor dredge; see Section 7-Associated Researchers
and

Projects); and are not collecting the dissolved oxygen, percent saturation, and pH parameters.

The use of the newest (Version 2.0) National Estuarine Research Reserve (NERR)

System-Wide Monitoring Program (SWMP) YSI 6-Series Multi-Parameter Water Quality

Monitor Standard Operating Procedures began in July 1999 when they became available.

#### 5. Site location and character

The Wells National Estuarine Research Reserve is located in York County,

within the town of Wells, on the coast of southern Maine and faces the Atlantic

Ocean. The Wells NERR is approximately  $31\ km$  (20 miles) south of Portland,

Maine and 110 km (70 miles) north of Boston, Massachusetts. The Reserve encompasses 1,690 acres along the Gulf of Maine coastline of tidally-flushed

wetlands, riparian and transitional upland fields and forests within the Little

River Estuary and the larger Webhannet River Estuary. Both estuaries arise in

the sandy glacial outwash plain about eight miles inland. Both rivers empty

into Wells Bay, a sandy basin stretching for approximately ten miles along the

Atlantic coast. Bordering each river's Inlet are double spit barrier beaches

attached to the mainland. The backbarrier system is approximately 5 sq.  $\,\mathrm{km}$  and

is composed of large intertidal marshes (predominantly S. patens and S. alterniflora), intertidal sand and mud flats, and tidal channels. The watershed

for the Webhannet River estuary covers an area of 35 sq. km and has a total of  $6\,$ 

streams, brooks or creeks which enter the estuary. These tributaries flow

across sand and gravel deposits near the headwaters and the impermeable sandy muds of the Presumpscot Formation in the lower reaches. The Webhannet

River is connected to the ocean via Wells Inlet, which has a spring tidal prism

of 28,200,000 cubic m (Ward 1993).

The force and volume of tidal action affect the salinity level of both rivers.

In the Wells region, the annual mean wave height is almost 20 inches. The

estuarine system is dominated by semi-diurnal tides having a range of 8.5 to 9.8

feet. The volume of freshwater influx into both estuaries is moderate to low

(on the order of  $0.5\ \mathrm{cubic}\ \mathrm{meters/second}$ ), especially in the summer, because of

the rivers relatively small drainage areas and the presence of deep glacial

deposits. The relatively low flows from these two rivers taken in with the  $20\,$ 

inch per year average runoff of the area surrounding the estuaries combine to

form a fresh water flow, which is dwarfed by tidal flushing. Twelve-foot

dwarf the freshwater flow into the Webhannet estuary, which has a drainage area

of 14.1 square miles. The Webhannet estuary, fed by both Blacksmith and Depot

Brooks, is adjacent to the harbor and greatly developed land. It offers a

valuable opportunity for comparison with the relatively pristine Little River

estuary. The land use of the Webhannet estuary include a total of  $15\ensuremath{\%}$  for

wetland, fresh water, and tidal marsh; a total of  $63.7\ \%$  for woodland; and a

total of 18.6% for developed land (compared to a total of 5.7% development in

the Little River estuary) (WNERR RMA 1996; Holden 1997).

There are two sampling sites in the Webhannet River estuary. These are

located at the Head of Tide and at the Inlet. The tidal range at each of these

sites is 2.6-2.9 meters.

The Head of Tide site is located 4 miles south of the Wells Reserve, just  $\,$ 

downstream of the Webhannet Falls (freshwater) and 10 feet east of Route One (43

deg 17' 54.25227" N Latitude, 70 deg 35' 13.82728" W Longitude). Route One is

used heavily with traffic all year, especially during the summer tourist months.

This site has soft mud, sand, and a rocky substrate, and the low and high tide

depth is relatively shallow. The salinity range here is  $0\text{--}31~\mathrm{ppt}$ , with a mean

of 3.6 ppt. These head waters of the Webhannet are relatively undeveloped.

This site is located just 10 feet east of the Route One bridge, and is our  $\ensuremath{\text{\text{out}}}$ 

roving site.

The Inlet site is located 1.5 miles south of the Wells Reserve, at the  $\,$ 

Wells Harbor pier (43 deg 19' 12.44804" N Latitude, 70 deg 33' 13.82728"  $_{\rm W}$ 

Longitude). The mouth of the Webhannet estuary forms an extensive wetland/salt  $\ensuremath{\mathsf{N}}$ 

marsh area, which is surrounded by development. Wells Harbor, which was most

recently dredged in 1971, has moorings for approximately 200 commercial fishing

and recreational boats. The mouth of the river flows between two jetties to the

Atlantic Ocean. This channel was dredged in 1974. This site has a predominately sand substrate and is characterized by strong current during

incoming and outgoing tides. The salinity range here is  $7-35~\mathrm{ppt}$ , with a mean

of 31 ppt. The Inlet site is heavily impacted at the Wells Harbor dock and is

our long-term monitoring site.

### 6. Data collection period:

The Webhannet River Head of Tide (HT) site data collection was redeployed

(after being pulled in December 1995, December 1996, December 1997, December

1998, and December 1999) on April 14, 17:00 and pulled after December 9, 3:00

for the winter months to prevent ice damage. This site gets a large amount of

ice coverage from December through late March.

The Webhannet River Inlet (IN) site data collection began May 29, 1995,

13:00. The IN datalogger is ongoing throughout the year and is considered our

long-term monitoring site, as this site remains relatively ice-free.

# 7. Associated researchers and projects

WELLS NATIONAL ESTUARINE RESEARCH RESERVE RESEARCH AT THE RESERVE 1999-2000:

The Research Program at the Wells NERR conducts and supports research, monitoring, workshops, and research/resource management planning of relevance at

local, regional and national levels. The overall aim of our work is to produce

science-based information needed to sustain or restore Gulf of Maine coastal

habitats and resources, especially those found in salt marsh estuaries and

watersheds. During 1999-2000 twenty-three different studies (involving 79

scientists, students, and staff from the Reserve, 26 academic institutions and

19 resource management groups) focused on several related themes: 1) the quality

of water resources in salt marsh estuaries and watersheds 2) land conservation

strategies to protect coastal watersheds factors controlling salt marsh accretion, erosion and plant community vigor 3) the value of salt marsh as

habitat for fish, shellfish and birds, and 4) restoration of salt marsh habitat

degraded through human actions.

Estuarine Water Resource Quality

Water quality is monitored continuously at several stations with automated

instruments as part of a NERRS systemwide monitoring program, as well as bimonthly at 15-20 stations through our WET volunteer monitoring program. The

WET program also monitors two important biological parameters: fecal coliform

bacterial contamination (an indicator of human health risk) and phytoplankton

productivity (an indicator of estuarine health). These data have 1) allowed us

to identify several bacterial hot spots that we will be working to eliminate, 2)

are used to identify and open areas safe for shellfishing, and 3) have uncovered

a relation between tides and low dissolved oxygen (a stressful condition for

marine life) that needs further study. Our water quality work has contributed

to the designation of several Priority Watersheds in coastal Southern Maine by

the Maine Department of Environmental Protection.

### Coastal Conservation Strategies

The Coastal Mosaic Project is a new program developed in response to requests

for support from the conservation community to increase the quantity, quality

and ecological integrity of conserved lands in our region. Research staff

organize and facilitate meetings, workshops, and communications for 18 partner

conservation groups. A key element of the Project is the Conservation Resource

Center, a Reserve staffed GIS facility with a growing database able to provide maps of property, natural features and other data needed to develop

effective conservation goals and strategies. The Project is nearing completion

of conservation lands maps for 13 Southern Maine coastal towns, and is undertaking an initiative to develop coastal watershed conservation strategies

for 12 coastal watersheds within these towns. The Reserve has a particular  $\ \ \,$ 

interest in educating communities about the ecologic and economic benefits of

land conservation, especially along estuarine and riverine shorelines.

# Salt Marsh Habitats and Communities

Factors that control the dynamics and vigor of salt marsh plant communities and

marsh peat formation consequently determine the ability of a salt marsh to

persist in the face of sea level rise. Through a combination of experimental

manipulations and long term monitoring, a number of multi-year studies are

currently producing data to answer questions concerning the sustainability of

salt marsh habitats in this region. These studies are looking at nutrient-plant

relations, plant community responses to physical and hydrologic disturbance, and

the relative contribution of short-term natural events (e.g. storms) and human

activities (dredging, tidal restriction) on patterns of sediment accretion and

erosion. The Reserve's marshes and beaches are already among the best studied  $% \left( 1\right) =\left( 1\right) +\left( 1$ 

sites in the U.S. with regard to long term accretion and erosion (over thousands of years).

# HABITAT VALUE FOR FISH, SHELLFISH AND BIRDS

The Reserve combines long-term monitoring with periodic surveys and short-term

experiments to identify species and measure trends and changes in populations of

fish, crustaceans, clams and birds. We have 10 years of data on upland and

shore birds with which to assess the status of resident and migratory avian  ${\bf r}$ 

populations, and 8 years of wading bird data that we use as a gross level indicator of salt marsh health, which appears to be stable. Our periodic

larval, juvenile and adult fish surveys have produced the best available data

for fish utilization of salt marsh estuaries in the  $\operatorname{Gulf}$  of  $\operatorname{Maine}$ . In the

coming year we plan to develop a long-term monitoring program for finfish that

will be coordinated with other sites within the Gulf of Maine and along the east coast. Since 1994 we have been conducting surveys and field experiments to look at the survival and growth of hatchery seed, juvenile and

adult softshell clam with regard to habitat characteristics and predation by the

invasive green crab.

## Salt Marsh Degradation and Restoration

Salt marsh ecosystems in the Gulf of Maine have sustained themselves in the

face of sea-level rise and other natural disturbances for nearly five thousand

years. Since colonial times large areas of salt marsh (up to half of the total

area) have been lost through diking, draining and filling. Today, the remaining

marshland is fairly well protected from outright destruction, but during the

past 100 years, and especially since the 1950's, salt marshes have been divided

into fragments by roads, causeways, culverts and tide gates. Most of

fragments have severely restricted tidal flow, leading to chronic habitat degradation and greatly reduced access for fish and other marine species. Since

1991, the Wells Reserve has been studying the impact of these restrictions on

salt marsh functions and values, and the response of salt marshes to  $\operatorname{tidal}$ 

restoration. We have been working to promote an awareness of the damage being

done and the benefits of salt marsh restoration throughout the  $\operatorname{Gulf}$  of Maine.

## Research Program Update:

In addition to the Reserve-sponsored projects outlined above, numerous visiting  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

investigators will be involved in on-site research. Topics include: the effects

of land use, sea level, and climate on estuarine productivity; the relationship

between soil nutrients and plant community patterns; the influence of soil

salinity on plant community interactions; the effect of tidal restriction on

marsh peat accretion; the comparative ecology of fringe marshes and back barrier

marshes; habitat use by upland birds, and the ecology of lyme disease.

 $\in$  The Wells NERR Research Dept. was just funded to work on the following project

this spring:

Community-based plan to manage current and future threats from point and  $\operatorname{non-}$ 

source point pollution in the Merriland River and Branch Brook Watersheds of the

Little River Estuary.

There will be a shoreline survey of the Little River and its Watershed this

March. The preliminary goal of this project is a) to produce a community-based

watershed management plan for the Branch Brook, Merriland River, Little River

combined watersheds, and b) to convey the elements of the plan to critical audiences through a succinct road show, culminating in a public event to showcase the plan.

 $\in$  The Wells NERR Research Dept. was also funded this year to work on the following project:

Measuring the Health of the York River Ecosystem using Fish as Indicators. The  $\,$ 

results of this study will provide information on the ecology and fisheries of

the York River that is essential for wise stewardship of this precious but

threatened community resource. The goal of this project is to assist the York

Rivers Association and partners in their work as stewards of the York River and

its watershed, through an assessment of the current and potential fish habitat

value of this exemplary coastal ecosystem.

 $\in$ The Wells NERR Research Dept. is involved with the following two CICEET Projects.

I. Project Title: Estuarine Responses to Dredging: Analysis of Sedimentary and

Morphological Change in Back Barrier Marsh to Aid Local Management and Develop a

Regional Management Tool Principal Investigator (s): Michele Dionne, Wells NERR,

ME; Duncan Fitzgerald, Boston University; Joe Kelley, University of Maine; David

Burdick and Larry Ward, University of New Hampshire

Management Issue: Coastal management tool for assessing the impacts of dredging  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

in estuaries.

Project Summary: An adequate supply of sediment is essential for maintaining

salt marshes. Human activities, such as channel dredging and tidal restriction  $\$ 

due to road construction, can alter water flows in estuaries and result in

dramatic changes in salt marsh sediment supply, affecting the speed of salt

marsh erosion. The objective of this project is to determine the impact of

dredging and tidal restriction on salt marshes in the Wells NERR. A digital

coastal management guide will be created on CD ROM, providing coastal managers

with useful conceptual models for predicting the impacts of dredging and other

activities that affect water flow and sediment deposition in salt marshes.

II. Project Title: Application of a Continuous Imaging Flow Cytometer for Monitoring Estuarine Microplankton Principal Investigators: Mike Sieracki and

Chris. Sieracki, Bigelow Laboratory for Ocean Studies

Management Issue: New technology for detecting harmful algal blooms Project Summary: Marine plankton is a significant component of highly productive

estuaries, affecting the distribution of oxygen, nutrients, and contaminants.

Estuarine marine plankton is also the primary food for the larvae of many commercially and ecologically important finfish and shellfish. In addition to

their highly productive role, some species of plankton occasionally form nuisance or toxic blooms that affect human health as well as fish and shellfish.

This project is developing an imaging system, called  ${\tt FlowCam}$ , to continuously

monitor plankton for the presence and abundance of harmful algal species. The

same technology could also be used to monitor the effects of harbor dredging on plankton.

 $\in$ The Wells NERR Research Dept. is assisting with the maintenance and data collection of the FlowCAM instrument and FlowCAM computer.

\*The following information on CICEET taken directly from its website: (http://www.ciceet.unh.edu)

Wells NERR Graduate Research Fellowships (GRF's):

1) Patrick Ewanchuck and Mark Bertness, Ph.D.; Brown University

Project Title: Patch persitence and seedling dynamics in a Southern Maine marsh

and the process and pattern in western Atlantic salt marsh plant communities: a

biogeographical perspective.

2) Linday Whitlow, University of Michigan

Project Title: Integration of individual behavior and community dynamics to

determine mechanisms by which the invasive green crab impacts populations of the  $\ensuremath{\mathsf{I}}$ 

native soft-shell clam.

3) Pamela Morgan, University of New Hampshire

Project Title: Functions and values of salt marshes in northern New England: a

comparison of fringing marshes and back barrier marshes.

Other Onsite Research:

Michele Dionne, Wells NERR, Nancy McReel, Chuck Lubelczyk Project Title: Effect of herbivory by deer on forest regeneration

June Ficker

Project Title: Monitoring avian productivity and survivorship

Outside Researchers:

€Theresa Theodose, Ph.D., University of Southern Maine Project Title: Relationships between soil nutrient availability and species

composition of a high salt marsh in southern Maine.

€David Burdick, Ph.D. and Roelof Boumans, Ph.D.

University of New Hampshire, University of Maryland

Project Title: Sediment dynamics in salt marshes: functional assessment of

accretionary biofilters

€Peter Rand, M.D., Chuck Lubelczyk, Robert Smith, M.D.

Maine Medical Center

Project Title: Ecological determinants of the spread of the tick vector of  $\ensuremath{\mathsf{Lyme}}$ 

disease and other pathogens.

This summary was taken from summaries written by Michele Dionne, Research Director, and put together and updated from Scott Orringer, Research Associate

Abstracts, Reports and Publications 1997-1999

The following titles describe research, management, education and outreach

activities to which Reserve staff, visiting investigators, interns, or volunteers made contributions. The nature of these contributions include data

collection, management, or analysis; authorship; or workshop/committee participation.

Bayse, N. and M. Smith (1999) Landowner options for creating great communities.

Coastal Mosaic Project, Wells National Estuarine Research Reserve. 4 pages.

Belknap, D. F., and J. T. Kelley (1998) Development of Holocene relative sea-

level curves in Maine: Geological Society of America Abstracts with Programs,  $\,$ 

v. 30, p. 4-5.

Boumans, R., D. Burdick, and M. Dionne (1999) Modeling habitat change in salt

marshes following tidal restoration. Manuscript in review.

Bryan, R., M.Dionne, R. Cook, J. Jones and A. Goodspeed (1997) Maine citizens

guide to evaluating, restoring, and managing tidal marshes. Maine Audubon

Society, Falmouth, ME.

Buchsbaum, R., D.M. Burdick, R. Cook, T. Diers, M. Dionne, K. Hughes, R. Milton,

H. A. Neckles, L. Roberts, C.T. Roman, J. Taylor, and D. Thompson (1999) Standards and criteria for evaluating tidal wetland restoration in the Gulf of

Maine: workshop results. Estuarine Research Federation Abstracts with Programs.

Burdick, D. M. , R. M. Boumans, M. Dionne and F. T. Short (1999) Impacts to salt

marshes from tidal restrictions and ecological responses to tidal restoration .

Report submitted to the Estuarine Reserves Division, National Oceanic and Atmospheric Administration. 51 pages plus figures and appendices.

Burdick, D. M., R. M. Boumans, and M. Dionne (1999) Modeling habitat change

following tidal restoration in New England salt marshes. Estuarine Research

Federation Abstracts with Programs.

Burdick, D., M. Dionne, R. Boumans and F. Short (1997) Ecological responses to

tidal restoration in two New England salt marshes. Wetlands Ecology and Management 4:129-144.

Dionne, M. (1999) Fish utilization of salt marsh habitat in the Gulf of Maine.

Gulf of Maine News (Spring): p 1-7.

Dionne, M., D. Burdick, R. Cook, R. Buchsbaum, and S. Fuller (1998) Scoping

paper 5: physical alterations to water flow and salt marshes: protecting and

restoring flow and habitat in  $\operatorname{Gulf}$  of Maine salt marshes and watersheds. Final

draft of a working paper. Commission for Environmental Cooperation and Global

Program of Action Coalition for the Gulf of Maine. 68 pp.+ appendices.

Dionne, M., F. Short, and D. Burdick (1998) Fish utilization of restored, created and reference salt marsh habitat in the Gulf of Maine. American Fisheries Society Symposium 22: Fish habitat: Essential Fish Habitat (EFH) and

Rehabilitation: 384-404.

Dionne, M. (1997) Animal interactions and secondary productivity in northeastern

tidal marshes. Pages 19-24 in R. A. Orson, R. S. Warren, W. A. Niering and P.Van

Patten (eds), Research in New England Marsh-Estuarine cosystems:directions and

priorities into the next millenium. Connecticut Sea Grant Publications, University of Connecticut, Groton.

Dionne, M. (1997) Nutrients and dissolved oxygen in Maine estuaries and embayments. Final data report submitted to New England Interstate Water Pollution Control Commission. 46 pp including appendices.

Hoffman, C. 1997. Drakes Island Marsh Restoration Project Report. Contracted out by the Wells NERR.

Holden, W.F. 1997. Fresh water, suspended sediment and nutrient influx to the

Little River and Webhannet River Estuaries, Wells, Maine. Ph.D. dissertation,

Boston University. pp 1-179

Kelley, J. T., S. M. Dickson, D. F. Belknap and W. A. Barnhardt (1998) Nearshore

sand volume as a component of littoral sand budgets in Maine, Norhern New England, USA: International Coastal Symposium, Coastal Education and Research

Foundation. Journal of Coastal Research SI 26, p. A16-A17.

Kelly, J. R. (1997) Dissolved oxygen in Maine estuaries and embayments: 1996

results and analyses. Report submitted to Wells National Estuarine Research

Reserve. 89 pp including appendices.

Maine State Planning Office (1998) Improving Maine's beaches: recommendations of

the Southern Maine Beach stakeholder group. 16 pp.

Miller, G.T., D. F. Belknap, J.T. Kelley, D.M. Fitzgerald (1997) Ground-penetrating radar of a coastal moraine compared to seismic reflection profiles

of moraines preserved on the inner shelf off Southwestern Maine. Abstracts with

Program -Geological Society of America 29: 67.

Morgan, P. A. and F. T. Short (1999) Functions and values of fringing salt

marshes in northern New England. New England Estuarine Research Society Abstracts (spring meeting).

Moser, Susanne (1998) Talk globally, walk locally: the cross-scale influence of

global change information on coastal zone management in Maine and Hawaii.  ${\tt ENRP}$ 

Discussion Paper E-98-16, Kennedy School of Government, Harvard University. 60

pp. [the Wells NERR was one of many interviewees that contributed to
this
study.]

Rand, P. W., E. H. LaCombe, R. P. Smith, Jr., and J. Ficker (1998). Participation of birds Aves in the emergence of lyme disease in Southern Maine.

Journal of Medical Entomology 35: 270-276.

Short, F. T. (1997) New England Estuarine Society Spring Meeting held at the

Wells National Estuarine Research Reserve, Wells, Maine. Environmental Conservation 24: 291-292.

Short, F. T., C. A. Short, R. C. Davis, D. M. Burdick, and P. Morgan (1998)

Developing success criteria for multiple estuarine habitats. Abstracts with

Program -Goal Setting and Success Criteria for Habitat Restoration, Charleston, S.C.

Sinson, D. A., D. F. Belknap, and J. T. Kelley (1998) Shoreface vibracore

analysis: Wells embayment, southern Maine: Geological Society of America Abstracts with Programs, v. 30, p. 74.

Smith, M. (1999) Southern Maine Coastal Mosaic habitat conservation project.

Coastal Mosaic Project, Wells National Estuarine Research Reserve. 5 pages plus maps and appendices.

Theodose, T. A. (1999) Nutrient availability, nutrient limitation, and species diversity in salt marsh forb communities. New England Estuarine Research

Society Abstracts (spring meeting).

Theodose, T. A. and J. B. Roths (1999). Relationships between nutrient availability. stress and diversity on two New England salt marshes. Plant

Ecology. In press.

Theodose, T. A. (1997) Relationships between stress, nutrient availability, and

plant community diversity on two high salt marshes in southern Maine. Ecological Society of America Abstracts.

Theodose, T.A. (1997) Spatial variation in soil nutrient availability, production, and plant species diversity on two high salt marshes in southern

Maine. New England Estuarine Research Society Abstracts (spring meeting).

Wade, Stephen (1999) Effects of tidal restriction on elevation and plant communities in five tidal marshes in Wells and Kennebunk, Maine. Masters Project, Antioch New England Graduate School. 23 pages plus figures and maps.

Ward, L. G. 1993. Precipitation, streamflow, and water characteristics (physical and chemical) of the Webhannet River Estuary, Wells, Maine. Draft

final report by UNH, Jackson Estuarine Laboratory, Durham, NH. NOAA Technical

Memorandum, pp. 1-13.

WNERR RMA 1996. Wells NERR Management Plan. Prepared by the WNERR Management

Authority (RMA) and NOAA, SRD Division. pp. 1-120.

Whitlow, Lindsay (1999) Size-dependent vulnerability of soft-shell clams to

predation by the invasive green crab in Wells, ME. Abstracts Program. 1st

National Conference on Marine Bioinvasions.

Wood, Robert (1998) Town of Wells softshell clam program: options and recommendations. Wells National Estuarine Research Reserve, Wells, ME. 9 pp.

- II. Physical Structure Descriptors
- 8. Variable sequence, range of measurements, units, resolution, and accuracy:
- a. YSI 6000 datalogger

Variable Range of Measurements Resolution Accuracy

Date 1-12, 1-31, 00-99 (Mo, Day, Yr) 1 mo, 1 day, 1 yr

NA

| Time 0                                     | -24, 0-60, 0-60 (Hr,Min,Sec) | 1 hr, 1 min, 1 s | NA      |
|--------------------------------------------|------------------------------|------------------|---------|
| Temp                                       | -5 to 45 (c)                 | 0.01 C           | +/-     |
| 0.15C                                      |                              |                  |         |
| Sp COND                                    | 0-100  (mS/cm)               | 0.01mS/cm        | +/-0.5% |
| Of                                         |                              |                  |         |
| reading + 0.001mS/Cm                       |                              |                  |         |
| Salinity 0                                 | -70 Parts per thousand (ppt) | 0.01 ppt         | +/- 1%  |
| of                                         |                              |                  |         |
| Reading or 0.1 ppt, (whichever is greater) |                              |                  |         |
| DO 0                                       | -200 (% air saturation)      | 0.1% @air sat    | +/-2%   |
| @air                                       |                              |                  |         |
| Saturation                                 |                              |                  |         |
| DO 2                                       | 00-500 (% air saturation     | 0.1% @ air sat   | +/- 6%  |
| @                                          |                              |                  |         |
| Saturation                                 |                              |                  |         |
| DO                                         | 0-20  (mg/l)                 | 0.01  mg/l       | +/-     |
| 0.2mg/l                                    |                              |                  |         |
| DO                                         | 20-50  (mg/1)                | 0.01  mg/l       | +/-     |
| 0.6mg/l                                    |                              |                  |         |
| Depth (shallow)                            | 0-9.1 (m)                    | 0.001m           | +/-     |
| 0.018m                                     |                              |                  |         |
| PH                                         | 2-14 units                   | 0.01 units       | +/-     |
| 0.2units                                   |                              |                  |         |
| Turb                                       | 0-1000 NTU                   | 0.1 NTU          | +/- 5%  |
| of                                         |                              |                  |         |
| Reading or 2 NTU (whichever is greater)    |                              |                  |         |

Data columns are separated by tabs. Each file contains a two line column header at the top of the page which identifies measurements and units for each column.

## 9. Coded variable indicator and variable code definitions:

Site definitions:HT = Head of Tide of Webhannet River IN = Inlet at Webhannet River Mouth

File definitions: YSI deployment site/month/year (ex.: IN0700 = Webhannet Inlet data from July 2000).

# 10. Data anomalies:

January, 2000 Sampling Period

Head of Tide: None to report; sonde not deployed until April.

### Inlet:

The following was a high positive turbidity spike that was not consistent with

the overall data record. This suspect datum was not deleted, as we are not

absolutely sure that this value was bad.

1/16 16:30 (143.3)

February, 2000 Sampling Period Head of Tide: None to report; sonde not deployed until April.

#### Inlet:

The following was a high positive turbidity spike that was not consistent with

the overall data record. This suspect datum was not deleted, as we are not

absolutely sure that this value was bad.

2/19 10:30 (65.6)

March, 2000 Sampling Period

Head of Tide: None to report; sonde not deployed until April.

#### Inlet:

There was a gradually increasing and decreasing range of high positive turbidity

spikes (50.0 NTU) that occurred throughout deployment, from 3/8 6:00 through

3/31 23:30 (1014 values with a range from 50.1 to 597.1 NTU; mean of 183.17 NTU)

that were not consistent with the overall data record. These suspect data were

not deleted, as we are not absolutely sure that these values are bad (the post

calibration checked out normal). This may have been due to the snowmelt accompanied by the astronomical high tides.

The following are episodes of low dissolved oxygen (range from 1.5 to 3.0 mg/l,

mean of 2.3 mg/l) and percent saturation (range from 14.1 to 29.0%, mean of

22.2%) during several low tide and high tide fluctuations that were not consistent with the overall data record (at high tide the readings returned to

the consistency of the overall data record). These suspect data were not deleted, as we are not absolutely sure that these values are bad. Other parameters, the dissolved oxygen post-cal, and recalibration were good.  $3/30\ 15:00$ 

3/31 1:30-4:30, 14:30-17:00

The following are episodes of high dissolved oxygen (range from 11.1 to 13.5

mg/l, mean of 12.2 mg/l) and percent saturation (range from 110.0 to 132.4%,

mean of 115.0%) during several low tide and high tide fluctuations that were not

consistent with the overall data record (at high tide the readings returned to

the consistency of the overall data record). These suspect data were not deleted, as we are not absolutely sure that these values are bad. Other parameters, the dissolved oxygen post-cal, and recalibration were good.

3/1 11:30-12:30, 17:30-20:30

3/2 11:00-13:30, 18:30-21:30, 22:30-23:00

3/3 0:00, 7:30-9:30, 11:00-15:00, 16:00-18:30

3/4 13:00-19:00

```
3/5 12:00-23:30
3/6 0:00-1:30, 9:00-23:30
3/7 0:00-3:30, 9:30-23:30
3/8 0:00-7:00, 10:00, 22:30-23:30
3/9 0:00-5:30, 10:30-23:30
3/10 0:00-5:30, 11:30-23:30
3/11 0:00-5:00
3/11 12:30-19:00
3/12 0:30-5:30, 13:00-20:00
3/13 1:30-6:30, 14:00-23:00
3/14 2:00-9:30, 15:30-22:00
3/15 3:30-13:00, 14:00-19:00
3/16 5:00-23:00
3/17 6:00-11:00, 19:30-20:00
3/18 8:00-23:30
3/19 0:00, 8:30-23:30
3/20 0:00-1:00, 8:30-
3/20 18:00-23:30
3/21 0:00-2:00, 9:30-23:30
3/22 0:00-3:00, 10:00-23:30
3/23 0:00-4:00, 11:00-23:30
3/24 0:00-4:30, 12:00-22:00
3/25 0:00-3:00, 4:30, 12:30-19:30, 20:30
3/26 0:30-6:30, 12:30-16:30, 17:30-20:00
3/27 1:30-4:30, 6:00-6:30
3/27 14:00-17:30, 18:30-21:00
3/28 2:00-5:30, 15:00-18:00
3/29 4:00-5:30, 7:00-7:30
3/31 18:00-20:30
April, 2000 Sampling Period
Head of Tide:
Small negative and/or zero turbidity values were collected sporadically
throughout the following time span: 4/13 17:30-4/21 18:00 (logging period
recorded 306 anomalies), possibly due to a small calibration error.
These data
were not deleted.
The following are shallow positive depth data (133 values with a range of
0.01
to 0.09 \text{ m}; mean of 0.06 \text{ m}). Sonde probes suspected to be underwater as
other
parameters check out normal. These data were not deleted.
4/15 11:00-21:00, 23:30
4/16 0:00-9:00, 12:00-21:00
4/17 1:00-2:30, 4:00-5:30, 15:30-16:30
4/20 3:30-12:00, 15:30-23:30
4/21 4:00-12:30, 16:00-20:00
There was a continuous range of high positive turbidity spikes that
occurred
after an initial high spike of 132.6 NTU on 4/22 5:00, from 4/22 5:30
4/30 23:30 (422 values with a range from 14.4 to 81.2 NTU; mean of 24.17)
that
```

were not consistent with the overall data record. These suspect data were not

deleted, as we are not absolutely sure that these values are bad (the post  $% \left( 1\right) =\left( 1\right) +\left( 1\right)$ 

calibration checked out normal). (Although this value range would not normally

be labeled anomalous as they are not considerably high spikes, they are included

in this range because of continuously stabilized values after the initial high

spike on 4/22 5:00).

### Inlet:

There was a gradually increasing and decreasing range of high positive turbidity

spikes from 4/1 0:00 throughout 4/6 12:00 (continued from 3/8 6:00; see above)

(264 values with a range from 125.6 to 278.7 NTU; mean of 189 NTU) that were not

consistent with the overall data record. These suspect data were not deleted,

as we are not absolutely sure that these values are bad (the post calibration

checked out normal). This may have been due to the snowmelt accompanied by the

astronomical high tides.

The following was a range of low negative dissolved oxygen and percent saturation data. These suspect data were deleted (although the post calibration  $\frac{1}{2}$ 

checked out normal), as these readings were out of the probe's acceptable range.

4/5 16:00-17:00.

The following are episodes of low dissolved oxygen (range from 0.0 to 3.1 mg/l,

mean of 0.7 mg/l) and percent saturation (range from 0.0 to 30.0%, mean of 6.9%)

during several low tide and high tide fluctuations that were not consistent with

the overall data record (at high tide the readings returned to the consistency

of the overall data record). These suspect data were not deleted, as we are not  $\ensuremath{\mathsf{C}}$ 

absolutely sure that these values are bad. Other parameters, the dissolved

oxygen post-cal, and recalibration were good.

4/1 2:00-5:00, 14:00-17:30

4/2 2:30-6:30, 16:00-18:30

4/3 2:30-7:00, 15:00-19:30

4/4 3:00-6:30, 7:30, 15:30-19:30

4/5 0:30, 2:00-8:30, 11:00-13:30, 14:30-15:30, 17:30-21:30, 23:00-23:30 4/6 0:00-10:00, 12:00

No data collected from 4/6 12:30 through 4/13 17:30 due to a telemetry unit

```
crash; caused by a major leak through the vented-level cable causing data
sonde
corrosion at the cable/sonde interface. From 4/13 18:00 through 5/30
non-vented level YSI 6000 was used in its place, as both the vented-level
cable
and YSI 6600 were sent back to YSI for repairs.
No dissolved oxygen data or percent saturation data on the following
dates/times
due to a suspected DO membrane puncture or tear and probe malfunction
4/13 18:00-4/24 5:30
4/27 11:30-4/30 23:30
The following were two high positive turbidity spikes that were not
consistent
with the overall data record. These suspect data were not deleted, as we
not absolutely sure that these values were bad.
4/22 11:30 (147.3)
4/22 12:00 (42.5)
May, 2000 Sampling Period
Head of Tide:
The following are shallow positive depth data (386 values with a range of
to 0.09~\mathrm{m}; mean of 0.06~\mathrm{m}). Sonde probes suspected to be underwater as
other
parameters check out normal. These data were not deleted.
5/1 19:30-20:30
5/2 0:00-9:00
5/5 15:00-23:00
5/6 22:30-23:30
5/7 0:00, 5:00-13:00, 16:30
5/8 1:00, 7:00-14:00, 17:00-23:30
5/9 0:00-2:00, 7:00-15:00, 18:30-23:30
5/10 0:00-2:30
5/11 2:30-3:00
5/13 3:30, 15:00-19:00, 23:00-23:30
5/14 0:00-6:00, 5:30-11:00, 13:30-14:30, 21:30-23:00
5/21 18:30-23:30
5/22 0:00-1:00, 4:00-14:30, 15:30, 16:30-23:30
5/23 0:00-2:00, 5:00-23:30
5/24 0:00, 2:30, 5:00, 10:00-12:00
5/25 9:30-10:30, 11:30-15:30
5/27 11:00-23:30
5/28 0:00-6:30, 8:30-19:00, 21:00-23:30
5/29 0:00-6:30
5/31 14:30-20:30
The following are shallow negative depth data (44 values with a range of
to -0.05 m; mean of -0.03 m). Sonde probes suspected to be underwater as
parameters check out normal. These data were not deleted.
5/7 17:00-23:30
5/8 0:00-0:30, 6:00-6:30
```

```
5/18 15:00-21:00
5/24 0:00-2:00, 5:30-8:30
The following were high positive turbidity spikes that were not
consistent with
the overall data record. This suspect data were not deleted, as we are
absolutely sure that these values were bad.
5/5 1:00 (56.50), 1:30 (51.20), 3:00 (65.80)
           (94.10), 3:30 (72.80), 4:00 (103.00)
5/6 2:00
         (99.90), 3:00 (75.30), 3:30 (63.20)
5/7 2:30
                                        (78.70), 4:30 (72.70), 6:00
5/8 3:00 (96.20), 3:30 (90.30), 4:00
      (60.80)
           (68.80), 5:00 (60.70), 5:30 (64.40), 6:00 (52.20), 6:30
5/9 4:30
      (51.70),
7:00 (73.60)
5/10 5:30 (77.00), 6:00 (59.70), 8:00 (59.60), 23:30 (51.50)
The following are episodes of low dissolved oxygen (range from 0.0 to 3.3
mq/l,
mean of 0.8 \text{ mg/l}) and percent saturation (range from 0.2 \text{ to } 29.0\%, mean
of 7.0%)
during several low tide and high tide fluctuations that were not
consistent with
the overall data record (at high tide the readings returned to the
consistency
of the overall data record). These suspect data were not deleted, as we
absolutely sure that these values are bad. Other parameters, the
oxygen post-cal, and recalibration were good.
5/20 14:30
5/21 1:00-4:00
5/22 3:00-3:30
5/23 3:00-4:00
5/23 13:30-20:00, 21:30-23:30
5/24 0:00-7:00, 9:00-9:30
5/29 21:00-22:00
5/30 21:00-23:30
5/31 10:00-12:00, 20:00-23:00
Inlet:
There is missing dissolved oxygen and percent saturation data from 5/1
through 5/31 23:30 due to a suspected DO membrane puncture or tear and
probe
malfunction.
No data collected on 5/3 11:00 due to a data gap. Logger did not record
within this time range, possibly due to an overwrite of data.
pH data suspect 5/6 23:30 - 5/30 9:30 for unknown reason. Data drops to
6.2 for
some time, possibly due to melting of snow in area. Post calibration
good. Data
were retained.
```

The following was a high positive turbidity spike that was not consistent with

the overall data record. This suspect datum was not deleted, as we are not

absolutely sure that this value was bad.

5/20 1:00 (257.1)

No turbidity data from 5/30 2:30-9:30 due to a turbidity probe malfunction.

June, 2000 Sampling Period

Head of Tide:

There was a continuous range of high positive turbidity spikes that occurred

after an initial high spike of 132.6 NTU on 4/22 5:00, from 6/1 0:00 to 6/2

13:30 (a continuation from 4/22 5:30 through 5/31 23:30) (78 values with a range

from 22.5 to 202.10 NTU; mean of 47.22) that were not consistent with the overall data record. These suspect data were not deleted, as we are not absolutely sure that these values are bad (the post calibration checked out

normal).

Small negative and/or zero turbidity values were collected sporadically throughout the following time span: 6/2 16:00-6/28 19:30 (logging period recorded 1028 anomalies), possibly due to a small calibration error. These data

were not deleted.

The following are shallow positive depth data (56 values with a range of 0.0 to

0.09 m; mean of 0.02 m). Sonde probes suspected to be underwater as other parameters check out normal. These data were not deleted.

6/1 0:30-9:30, 12:30-21:00

6/2 2:00-10:30, 13:30

The following are episodes of low dissolved oxygen (range from 0.0 to 3.0 mg/l,

mean of 1.1 mg/l) and percent saturation (range from 0.0 to 35.5%, mean of

12.6%) during several low tide and high tide fluctuations that were not consistent with the overall data record (at high tide the readings returned to

the consistency of the overall data record). These suspect data were not deleted, as we are not absolutely sure that these values are bad. Other parameters, the dissolved oxygen post-cal, and recalibration were good. These

episodes are a continuation from the May 2000 deployment (see above).

6/1 0:00-23:30

6/2 7:30, 13:30

6/3 14:00

6/27 20:30-23:00

6/28 23:00-23:30

6/29 0:00-8:30, 10:00-19:30

6/30 0:00-9:30, 11:30-21:00

# Inlet:

```
No data collected on the following dates/times; due to a data gap.
Logger
either (1) did not record data within this time range, possibly due to an
overwrite of data; or (2) did record the same data values because of an
overwrite (these data were deleted).
6/5 10:30-23:30
6/6 0:00-23:30
6/7 0:00-16:00
No turbidity data from 6/7 16:30 through 6/30 23:30 due to a turbidity
malfunction.
July, 2000 Sampling Period
Head of Tide:
The following are episodes of low dissolved oxygen (range from 1.3 to 3.2
mean of 2.4 \text{ mg/l}) and percent saturation (range from 16.3 \text{ to } 35.4\%, mean
of
28.0%) during several low tide and high tide fluctuations that were not
consistent with the overall data record (at high tide the readings
returned to
the consistency of the overall data record). These suspect data were not
deleted, as we are not absolutely sure that these values are bad. Other
parameters, the dissolved oxygen post-cal, and recalibration were
good. These episodes are a continuation from the June 2000 deployment
(see
above).
7/1 2:30-10:30, 13:30-22:00
7/2 4:30-11:30, 15:00-22:30
7/3 4:30-12:00, 16:00-23:00
7/4 4:30-13:00, 16:30-23:30
7/5 0:00-0:30, 5:00-14:00, 19:00-21:30, 22:30-23:30
7/6 0:00-1:30, 5:30-14:30, 19:30-21:00, 23:30
7/7 0:00-3:00, 6:00-13:00, 14:00-15:30, 20:30
7/8 0:30-4:00, 6:30-9:00, 14:30
7/9 1:30, 3:00-5:30, 7:00-8:00, 9:00-9:30, 10:30-11:00, 12:00-14:30,
15:30,
16:30-17:30
7/10 1:30, 3:00-7:00, 8:00-9:00, 16:00-18:30
7/11 2:00-2:30, 3:30-4:30, 5:30-6:00, 7:00-10:00, 11:00, 14:30-16:00,
17:00-
19:30
7/12 2:00-2:30, 3:30, 5:30-7:00, 8:00-9:30, 11:00
7/13 4:30, 6:00, 7:00-8:30, 9:30, 15:00, 20:30
7/14 5:00-10:30, 15:00, 18:30, 20:00-21:30
7/15 4:30, 6:00, 7:00-7:30, 9:00, 11:00-11:30, 19:30, 20:30-22:00
7/16 5:30-8:30
The following were two high positive turbidity spikes that were not
consistent
with the overall data record. These suspect data were not deleted, as we
not absolutely sure that these values were bad.
7/1 5:00 (230.4)
7/1 22:30 (130.2)
```

Small negative and/or zero turbidity values were collected sporadically throughout the following time span: 7/18 13:00-7/31 12:00 (logging period recorded 377 anomalies), possibly due to a small calibration error. These data

were not deleted.

#### Inlet:

No turbidity data from 7/1 0:00 through 7/5 8:30 due to a turbidity probe malfunction.

No data collected on 7/1 2:00 due to a data gap. Sonde did not record data

within this time range, possibly due to an overwrite of data.

There is missing dissolved oxygen and percent saturation data from 7/1 2:30

through 7/5 8:30 due to a suspected DO membrane puncture or tear and probe

malfunction.

There is missing data from 7/5 9:00 through 7/27 18:00 due to a telemetry unit

battery crash, and due to downtime for calibration, maintenance, and downloading.

Small negative turbidity values were recorded throughout the following time

span: 7/27 19:00-7/31 22:00 (logging period recorded 186 anomalies), possibly

due to a small calibration error. These data were not deleted.

The following was a high positive turbidity spike that was not consistent with

the overall data record. This suspect datum was not deleted, as we are not

absolutely sure that this value was bad.

7/31 23:30 (147.5)

August, 2000 Sampling Period

Head of Tide:

Small negative and/or zero turbidity values were collected sporadically throughout the following time span:  $8/2\ 2:00-8/25\ 19:00$  (logging period recorded

510 anomalies), possibly due to a small calibration error. These data were not deleted.

The following was a high positive turbidity spike that was not consistent with

the overall data record. This suspect datum was not deleted, as we are not

absolutely sure that this values was bad.

8/27 8:00 (78.3)

The following are episodes of low dissolved oxygen (range from 0.1 to 3.1  $\,\mathrm{mg}/\mathrm{l}_{\star}$ 

mean of 1.4 mg/l) and percent saturation (range from 1.0 to 35.2%, mean of

16.2%) during several low tide and high tide fluctuations that were not consistent with the overall data record (at high tide the readings returned to

```
the consistency of the overall data record). These suspect data were not
deleted, as we are not absolutely sure that these values are bad. Other
parameters, the dissolved oxygen post-cal, and recalibration were good.
8/26 10:30
8/27 3:30-6:30, 9:00, 14:00-20:00
8/28 6:00-10:00, 17:00-21:00
The following was a range of low negative dissolved oxygen and percent
saturation data. These suspect data were deleted (although the post
calibration
checked out normal), as these readings were out of the probe's acceptable
range.
8/27 7:00-8:30
The following are shallow positive depth data (144 values with a range of
0.04
to 0.09 \text{ m}; mean of 0.07 \text{ m}). Sonde probes suspected to be underwater as
parameters check out normal. These data were not deleted
8/7 9:30-16:30, 20:30
8/8 14:30-17:30
8/9 3:00-3:30, 4:30-5:30, 7:00, 8:30-18:30, 22:00-23:30
8/10 0:00-8:30, 9:30-19:00
8/26 3:30-4:30, 12:30-19:00
8/27 0:00-8:30, 12:00-20:00
Inlet:
Small negative and/or zero turbidity values were recorded throughout the
following time span: 8/1 0:00-8/17 3:30 (logging period recorded 221
anomalies),
possibly due to a small calibration error. These data were not deleted.
The following are episodes of low dissolved oxygen (range from 1.2 to 3.1
mean of 2.4 \text{ mg/l}) and percent saturation (range from 15.1 \text{ to } 38.3\%, mean
30.5%) during several low tide fluctuations that were not consistent with
overall data record (at high tide the readings returned to the
consistency of
the overall data record). These suspect data were not deleted, as we are
absolutely sure that these values are bad. Other parameters, the
dissolved
oxygen post-cal, and recalibration were good.
8/1 7:30, 8:30
8/11 5:00
8/12 6:30
8/25 4:00
8/26 4:30
8/27 5:00, 6:00
8/28 4:30-5:00, 6:30-7:00
8/29 5:30-6:00, 7:30-8:00
8/30 6:30-7:00, 8:00-9:00, 19:00, 21:00
8/31 7:00-9:30, 19:00
The following were 10 high positive turbidity spikes ("50 NTU), including
one
```

```
roll over episode (>1000 NTU), that were not consistent with the overall
data
record (range from 50.4-1585.8 NTU, mean of 332.63 NTU). This suspect
data were
not deleted, as we are not absolutely sure that these values were bad.
8/1 11:30
8/2 0:30
8/3 0:30, 1:30, 12:30
8/17 7:00, 8:00-8:30, 12:00
8/18 12:00
No turbidity data from 8/18 16:00 through 8/31 23:30 due to a turbidity
probe
malfunction.
September, 2000 Sampling Period
Head of Tide:
The following are shallow positive depth data (186 values with a range of
0.01
to 0.09 \text{ m}; mean of 0.06 \text{ m}). Sonde probes suspected to be underwater as
parameters check out normal. These data were not deleted
9/1 12:30, 16:30-23:30
9/2 0:00-1:00, 5:00-7:30, 9:00, 12:00-13:00, 17:30-23:30
9/3 0:00-2:00, 5:30-14:00, 18:00-23:30
9/4 0:00-3:00, 6:00-15:00, 19:00-21:30
9/8 10:30-19:30, 22:00-23:30
9/9 0:00-8:00, 15:00-19:00
9/15 3:00-11:30, 15:30-18:30, 23:00-23:30
9/16 4:00
The following was a range of low negative dissolved oxygen and percent
saturation data. These suspect data were deleted (although the post
calibration
checked out normal), as these readings were out of the probe's acceptable
range.
9/6 3:00-5:00
The following are episodes of low dissolved oxygen (range from 1.7 to 3.1
mq/l,
mean of 2.67 mg/l) and percent saturation (range from 19.3 to 37.8%, mean
32.76%) during several low tide fluctuations that were not consistent
with the
overall data record (at high tide the readings returned to the
consistency of
the overall data record). These suspect data were not deleted, as we are
absolutely sure that these values are bad. Other parameters, the
dissolved
oxygen post-cal, and recalibration were good.
9/1 4:00, - 8:30, 12:00
9/2 0:00-1:30, 3:00-13:30
9/3 00:30, 2:00-2:30, 10:30 - 13:00
9/4 2:00-3:30, 23:00, 23:30
9/5 0:00-13:30, 21:00-23:30
9/6 0:00-2:30, 5:30-13:00
```

```
9/10 2:30-3:30, 4:30 - 8:30
9/14 20:00-23:30
9/15 4:30-10:30
No data collected from 9/21 13:00 through 9/30 23:30 due to a major
crash, where battery voltage dropped quickly from 12.5 to 6.0 volts
approximately a 7 day span. Possible causes of this crash (after
conferring
with YSI engineers) include static electricity from a car seat prior to
deployment or a nearby lightning strike.
Inlet:
Small negative and/or zero turbidity values were recorded throughout the
following time span: 9/14 17:30 to 9/30 7:00 (logging period recorded 650
anomalies), possibly due to a small calibration error. These data were
not.
deleted.
The following are episodes of low dissolved oxygen (range from 1.0 to 3.0
mean of 2.3 \text{ mg/l}) and percent saturation (range from 12.0 \text{ to } 38.1\%, mean
29.2%) during several low tide fluctuations that were not consistent with
overall data record (at high tide the readings returned to the
consistency of
the overall data record). These suspect data were not deleted, as we are
absolutely sure that these values are bad. Other parameters, the
dissolved
oxygen post-cal, and recalibration were good.
9/1 7:30-10:30
9/2 8:30-11:00, 20:00, 21:30
9/3 8:00-11:30, 20:30-23:00
9/4 0:00, 9:00-12:00, 21:30-23:30
9/5 0:30, 23:00
9/6 2:30, 11:00, 12:30-14:30, 23:30
9/7 0:00, 2:30
9/8 3:00-4:30, 14:30-15:30
9/9 2:30-4:00, 5:00, 15:00
9/10 4:00-6:00
October, 2000 Sampling Period
Head of Tide:
No data collected from 10/1 0:00 through 10/31 23:30 due to a major
battery
```

crash (a continuation from the 9/21 13:00 crash), where battery voltage

causes of this crash (after conferring with YSI engineers) include static electricity from a car seat prior to deployment or a nearby lightning

quickly from 12.5 to 6.0 volts within approximately a 7 day span.

dropped

Possible

strike.

```
Inlet:
Small negative and/or zero turbidity values were recorded throughout the
following time span: 10/13 12:00 to 10/30 9:00 (logging period recorded
anomalies), possibly due to a small calibration error. These data were
deleted.
The following are 62 suspect dissolved oxygen and percent saturation
values, due
to high outliers not consistent with the overall data record (range from
10.6 \,\mathrm{mg/L} and 121.2 \,\mathrm{w} to 16.1 \,\mathrm{mg/l} and 185.4 \,\mathrm{w}, mean of 12.9 \,\mathrm{mg/l} and
Although these suspect values were not consistent with the overall data
record,
they
were not deleted; as other parameters, the dissolved oxygen post-cal, and
recalibration were good.
10/8 10:30-23:30
10/9 0:00-6:00
10/10 8:00-18:30
The following were high positive turbidity spikes (>50 NTU), that were
consistent with the overall data record (range from 62.8-775.3 NTU), mean
of
344.52 NTU. This suspect data were not deleted, as we are not absolutely
that these values were bad.
10/4 11:00 (67.00), 15:00 (65.80)
10/8 17:30 (751.70)
10/8 18:00 (775.30)
10/31 11:30 (62.80)
November, 2000 Sampling Period
Head of Tide:
No data collected from 11/1 0:00 to 11/14 14:30 due to a major battery
continuation from the 9/21 13:00 crash), where battery voltage dropped
quickly
from 12.5 to 6.0 volts within approximately a 7 day span. Possible
causes of
this crash (after conferring with YSI engineers) include static
electricity
from a car seat prior to deployment or a nearby lightning strike. Also,
due to downtime for calibration, maintenance and downloading.
The following are shallow positive depth data (145 values with a range of
0.09~\mathrm{m}; mean of 0.05~\mathrm{m}). Sonde probes suspected to be underwater as
parameters check out normal. These data were not deleted:
11/15 0:30, 3:00, 12:00
11/16 2:30
```

11/17 14:30

11/18 15:30, 17:30

```
11/19 5:30, 16:30, 18:30
11/20 5:30, 17:30, 18:00, 19:30
11/21 7:00-8:00
11/21 19:30-20:00
11/22 20:00-21:30
11/23 8:00
11/26 22:30-23:00
11/27 1:00-10:30
11/27 14:00-23:30
11/28 0:00-11:30, 14:00-23:30
11/29 0:00-12:30, 14:30-17:30
11/30 13:00-13:30, 15:00
The following are shallow negative depth data (111 values with a range of
to -0.12 m; mean of -0.04 m). Sonde probes suspected to be underwater as
other
parameters check out normal. These data were not deleted.
11/14 21:30-23:30
11/15 0:00, 3:30-11:30, 16:00-23:30
11/16 0:00-2:00
11/16 3:00-13:00, 16:00-23:30
11/17 0:00-8:00, 14:00, 17:00
11/21 6:30, 19:00
11/22 7:00-7:30, 9:30
11/24 9:00
11/26 20:00-22:00
The following were 15 high positive turbidity spikes ("50 NTU), some of
continuous range, that were not consistent with the overall data record
(range
from 50.6-572.4 NTU, mean of 222.88 NTU).
This suspect data were not deleted, as we are not absolutely sure that
these
values were bad.
11/15 8:30, 10:30
11/24 9:00-11:00
11/27 2:30, 5:00, 6:30, 8:00, 11:00, 14:00, 16:30
11/28 18:00
No data collected on the following dates/times; due to a data gap. The
did not collect data at these intervals:
11/25 0:30, 5:00, 8:00
Inlet:
There was a continuous range of high positive turbidity spikes from 11/1
throughout 11/29 9:30; 621 values with a range from 10.0 to 423.7 NTU;
mean of
32.8) that were not consistent with the overall data record. These
suspect data
were not deleted, as we are not absolutely sure that these values are bad
(the post calibration checked out normal).
There is missing dissolved oxygen and percent saturation data from 11/6
19:30 to
```

11/16 12:00, and 11/18 2:00 to 11/30 23:30 due to a suspected DO membrane puncture or tear and probe malfunction; and a high DO charge on retrieval.

There were two small negative and/or zero turbidity values on 11/21 19:30 and 11/25 10:30, possibly due to a small calibration error. These data were not deleted.

December, 2000 Sampling Period Head of Tide: The following are shallow negative depth data (5 values with a range of -0.01 to -0.14 m; mean of -0.09 m). Sonde probes suspected to be underwater as other parameters check out normal. These data were not deleted. 12/08 7:00 - 7:30, 8:30-9:00 The following were shallow negative depth data where there is suspect that sonde was out of the water, possibly due to ice in the holding tube from very cold and negative temperatures; from low specific conductivity and salinity data and high turbidity observations. All data were suspect and deleted. 12/2 22:00-23:30 12/3 0:00-10:00 12/4 4:30-9:00, 22:00-23:30 12/5 0:00-9:30, 17:30-23:30 12/6 0:00, 1:00, 4:30-11:30, 16:00-23:30 12/7 0:00 - 12:30, 16:00-23:30 12/8 0:00-6:30, 8:00, 10:00-23:30 12/9 0:00-3:00 The following were shallow positive depth data where there is suspect that sonde was out of the water, possibly due to ice in the holding tube from very cold and negative temperatures; from low specific conductivity and salinity data and high turbidity observations. All data were suspect and deleted. 12/1 0:00-13:30, 15:30-23:30 12/2 0:00-21:30 12/3 10:30-23:30 12/4 0:00-4:00 12/4 9:30-21:30 12/5 10:00-17:00 12/6 0:30, 1:30-4:00 12/6 12:00-15:30 12/7 13:00-15:30 12/8 9:30

No data from 12/9 3:30 to 12/31 23:30. This datalogger was pulled for the year

(winter months) to prevent ice damage.

#### Inlet:

There is missing dissolved oxygen and percent saturation data from 12/1 0:00

through 12/31 23:30 due to a suspected DO membrane puncture or tear and probe

malfunction; and a high DO charge on retrieval (a continuation from the 11/18

2:00 probe crash.)

The following were high positive turbidity spikes that were not consistent with

the overall data record. These suspect data were not deleted, as we are not

absolutely sure that these values were bad.

12/13 3:30 (97.70)

12/18 11:00 (51.50), 14:30 (130.70)

# 11. Missing data:

January, 2000 Sampling Period

Head of Tide: None to report; sonde not deployed until April.

#### Inlet:

No missing data due to downtime for calibration, maintenance, and downloading.

February, 2000 Sampling Period

Head of Tide: None to report; sonde not deployed until April.

# Inlet:

No missing data due to downtime for calibration, maintenance, and downloading;

used extra sonde to limit missing data.

March, 2000 Sampling Period

Head of Tide: None to report; sonde not deployed until April.

### Inlet:

No data collected on the following dates/times due to a data gap. Logger did

not record data possibly due to an overwrite of data.

3/15 19:30-23:30

3/16 0:00-3:00

No data from 3/8 10:30-22:00 due to downtime for calibration, maintenance and

downloading.

No data from 3/29 10:00-20:30 due to downtime for calibration, maintenance and

downloading.

April, 2000 Sampling Period

Head of Tide:

No data on 4/1 0:00 to 4/13 16:30; this was the first logger deployment (4/13 at)

17:00) at this site for 2000.

#### Inlet:

No data collected on the following dates/times due to a data gap. Logger did

not record data possibly due to an overwrite of data.

4/5 9:00, 14:00

4/6 11:30

4/18 11:00

The following is missing dissolved oxygen data and percent saturation data:

4/5 16:00-17:00

There is missing dissolved oxygen and percent saturation data on the following

dates and times due to a suspected DO membrane puncture or tear and probe  $\operatorname{malfunction}$ 

4/13 18:00-4/24 5:30

4/27 11:30-4/30 23:30

No data collected from 4/6 12:30 through 4/13 17:30 due to a telemetry unit

crash; caused by a major leak through the vented-level cable causing data sonde

corrosion at the cable/sonde interface.

No data from 4/24 6:00 to 4/27 11:00 due to downtime for calibration, maintenance and downloading.

May, 2000 Sampling Period

Head of Tide:

There are no missing data due to downtime for calibration, maintenance and

downloading.

#### Inlet:

There is missing dissolved oxygen and percent saturation data from 5/1 0:00

through 5/31 23:30 due to a suspected DO membrane puncture or tear and probe

malfunction.

No data collected on 5/3 11:00 due to a data gap. Logger did not record data

within this time range, possibly due to an overwrite of data.

No turbidity data from 5/30 2:30-9:30 due to a turbidity probe malfunction.

No data from 5/30 10:00 through 5/31 23:30 due to downtime for calibration,

maintenance, and downloading

June, 2000 Sampling Period

Head of Tide:

No data from 6/2 14:00-15:00 due to downtime for calibration, maintenance and

downloading.

#### Inlet:

No data from 6/1 0:00 through 6/2 15:00 due to downtime for calibration,

maintenance and downloading.

No data collected on the following dates/times; due to a data gap. Logger

either (1) did not record data within this time range, possibly due to an overwrite of data; or (2) did record the same data values because of an overwrite (these data were deleted).

6/5 10:30-23:30

6/6 0:00-23:30

6/7 0:00-16:00

No turbidity data from 6/7 16:30 through 6/30 23:30 due to a turbidity probe

malfunction.

July, 2000 Sampling Period

Head of Tide:

No data from 7/27 10:30-18:30 due to downtime for calibration, maintenance and downloading.

#### Inlet:

No turbidity data from 7/1 0:00 through 7/5 8:30 due to a turbidity probe malfunction.

No data collected on 7/1 2:00 due to a data gap. Logger did not record data

within this time range, possibly due to an overwrite of data.

There is missing dissolved oxygen and percent saturation data from 7/1 2:30

through 7/5 8:30 due to a suspected DO membrane puncture or tear and probe

malfunction There is missing data from 7/5 9:00 through 7/27 18:00 due to a

telemetry unit battery crash, and due to downtime for calibration, maintenance, and downloading.

August, 2000 Sampling Period

Head of Tide:

There are no missing data due to downtime for calibration, maintenance and

downloading.

No dissolved oxygen data and percent saturation data from 8/27 7:00-8:30.

# Inlet:

There are no missing data due to downtime for calibration, maintenance and

downloading.

No turbidity data from 8/18 16:00 through 8/31 23:30 due to a turbidity probe

malfunction.

September, 2000 Sampling Period

Head of Tide:

No dissolved oxygen data or percent saturation data from 9/6 3:00-5:00.

No data from 9/11 12:30-9/14 16:30 due to downtime for calibration, maintenance

and downloading.

No data collected from 9/21 13:00 through 9/30 23:30 due to a major battery

crash, where battery voltage dropped quickly from 12.5 to 6.0 volts within

approximately a 7 day span. Possible causes of this crash (after conferring

with YSI engineers) include static electricity from a car seat prior to deployment or a nearby lightning strike.

## Inlet:

No turbidity data from 9/1 0:00 through 9/11 11:00 due to a turbidity probe

malfunction.

No data from 9/11 11:30 to 9/14 17:00 due to downtime for calibration, maintenance and downloading.

October, 2000 Sampling Period

Head of Tide:

No data collected from 10/1 0:00 through 10/31 23:30 due to a major battery

crash (a continuation from the 9/21 13:00 crash), where battery voltage dropped

quickly from 12.5 to 6.0 volts within approximately a 7 day span. Possible

causes of this crash (after conferring with YSI engineers) include static electricity from a car seat prior to deployment or a nearby lightning strike.

#### Inlet:

There are no missing data due to downtime for calibration, maintenance and downloading.

November, 2000 Sampling Period

Head of Tide:

No data collected from 11/1 0:00 to 11/14 15:00 due to a major battery crash (a

continuation from the 9/21 13:00 crash), where battery voltage dropped quickly

from 12.5 to 6.0 volts within approximately a 7 day span. Possible causes of

this crash (after conferring with YSI engineers) include static electricity

from a car seat prior to deployment or a nearby lightning strike. No data due to

downtime for calibration, maintenance and downloading.

The following were shallow negative depth data where there is suspect that sonde

was out of the water, possibly due to ice in the holding tube from very cold and

```
negative temperatures; from low specific conductivity and salinity data
and high
turbidity observations. All data were suspect and deleted.
11/14 15:00-21:00
11/17 8:30-13:30, 17:30-23:30
11/18 0:00-6:00
11/20 20:30-23:30
11/21 0:00-6:00, 8:30-18:30, 20:30-23:30
11/22 0:00-6:30, 10:00-16:00
11/24 2:00-8:30, 21:00-23:30
11/25 0:00-9:30
11/26 19:30
The following were shallow positive depth data where there is suspect
that sonde
was out of the water, possibly due to ice in the holding tube from very
negative temperatures; from low specific conductivity and salinity data
and high
turbidity observations. All data were suspect and deleted.
11/18 6:30-15:00, 18:00-23:30
11/19 0:00-5:00, 6:00-16:00, 19:00-23:30
11/20 0:00-5:00, 7:30-17:00, 20:00
11/22 16:30-19:30, 22:00-23:30
11/23 0:00-7:30, 10:30-20:30, 22:30-23:30
11/24 0:00-1:30, 11:30-20:30
11/25 10:00-23:30
11/26 0:00-11:30, 13:00-19:00
11/29 18:00-23:30
11/30 0:00-12:30, 15:30-23:30
No data collected on the following dates/times, due to a data gap.
11/25 0:30, 5:00, 8:00
Inlet:
There is missing dissolved oxygen and percent saturation data from 11/6
11/16 12:00, and 11/18 2:00 to 11/30 23:30 due to a suspected DO membrane
puncture or tear and probe malfunction; and a high DO charge on
retrieval.
No data from 11/16 12:30 to 11/17 12:00 due to downtime for calibration,
maintenance and downloading.
December, 2000 Sampling Period
Head of Tide:
The following were shallow negative depth data where there is suspect
that sonde
was out of the water, possibly due to ice in the holding tube from very
cold and
negative temperatures; from low specific conductivity and salinity data
and high
turbidity observations. All data were suspect and deleted.
12/2 22:00-23:30
12/3 0:00-10:00
12/4 4:30-9:00, 22:00-23:30
12/5 0:00-9:30, 17:30-23:30
```

```
12/6 0:00, 1:00, 4:30-11:30, 16:00-23:30
12/7 0:00 - 12:30, 16:00-23:30
12/8 0:00-6:30, 8:00, 10:00-23:30
12/9 0:00-3:00
The following were shallow positive depth data where there is suspect
was out of the water, possibly due to ice in the holding tube from very
negative temperatures; from low specific conductivity and salinity data
and high
turbidity observations. All data were suspect and deleted.
12/1 0:00-13:30, 15:30-23:30
12/2 0:00-21:30
12/3 10:30-23:30
12/4 0:00-4:00
12/4 9:30-21:30
12/5 10:00-17:00
12/6 0:30, 1:30-4:00
12/6 12:00-15:30
12/7 13:00-15:30
12/8 9:30
No data from 12/9 3:30 to 12/31 23:30. This datalogger was pulled for the
(winter months) to prevent ice damage.
```

#### Inlet:

There is missing dissolved oxygen and percent saturation data from 12/1 0:00

through 12/31 23:30 due to a suspected DO membrane puncture or tear and probe

malfunction; and a high DO charge on retrieval (a continuation from the 11/18

2:00 probe crash.

There are no missing data due to downtime for calibration, maintenance and

downloading.

## 12. Other Remarks/Notes:

On 07/01/2021 this dataset was updated to include embedded QAQC flags for anomalous/suspect data. System-wide monitoring data beginning in 2007 were

processed to allow for QAQC flags and codes to be embedded in the data files

rather than detailed in the metadata alone (as in the anomalous/suspect, deleted, and missing data sections above). Prior to 2006, rejected data were

deleted from the dataset so they are unavailable to be used at all, but suspect data were only noted in the metadata document. Suspect data flags

<1> were embedded retroactively in order to allow suspect data to be easily

identified and filtered from the dataset if desired for analysis and reporting purposes. No other flags or codes were embedded in the dataset and users should still refer to the detailed explanations above for more information.

 $\in$ IMPORTANT CHANGES TO NOTE AT THE INLET SITE (IN); where our telemetry unit is

stationed: A new vented level YSI 6600 with its new vented level cable was

deployed to collect its first data on 5/4/99 at 12:00. The YSI telemetry unit

began collecting its first data on 3/16/98 at 10:30:00 (see Section 4-Research

Methods).

 $\in$ At the Inlet site (IN): No data collected from 4/6 12:30 through 4/13 17:30 due

to a telemetry unit crash; caused by a major leak through the vented-level cable

causing data sonde corrosion at the cable/sonde interface. From 4/13 18:00

through 5/30 9:30 a non-vented level YSI 6000 was used in its place, as both

the vented-level cable and YSI 6600 were sent back to YSI for repairs.

 $\in$ Note: The Wells NERR two Drakes Island sites (see 1996-1997 metatdata) are

currently being monitored (since 1996), but we are using the data for another  $\frac{1}{2}$ 

project (CICEET-Wells Harbor dredge; see Section 7-Associated Researchers and

Projects); and are not collecting the dissolved oxygen, percent saturation, and pH parameters.

 $\in$ The use of the newest (Version 2.0) National Estuarine Research Reserve (NERR)

System-Wide Monitoring Program (SWMP) YSI 6-Series Multi-Parameter Water Quality

Monitor Standard Operating Procedures began in July  $^199$  when they became available.

 $\in$ With our extra data sonde, we have been reducing the amount of time of missing

data from calibrations and maintenance for all sites. Some months have no

missing data from the use of this extra sonde.

 $\ensuremath{\in} \ensuremath{\mathsf{Any}}$  time a reference is made to turbidity data being negative and/or zero, it

was recorded as a negative in the raw data file and a zero in the edited data

file due to the formatting of Excel. The technician edited none of these data

points by hand nor did he/she delete any of them.

 $\in$ Any time a reference is made to turbidity data being negative and/or zero, it

was recorded as a negative in the raw data file and a zero in the edited data

file due to the formatting of Excel. The technician edited none of these data

points by hand nor did he/she delete any of them.

 $\in$ The Head of Tide site experienced some astronomical high and low tides in the

beginning of July, which caused fluctuations in the data. Once the tides resumed

normality, salinity, pH, and dissolved oxygen data resumed to its natural state,

as low salinity is normal for this freshwater site.